Backward problem for time-space fractional diffusion equations in Hilbert scales

被引:7
|
作者
Dang Duc Trong [1 ,2 ]
Dinh Nguyen Duy Hai [3 ,4 ]
机构
[1] Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[3] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[4] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
关键词
Time-space fractional backward diffusion; problem; Ill-posedness; Regularization; A-priori parameter choice; A-posteriori parameter choice; Optimal convergence estimates; BOUNDARY-VALUE METHOD; FINAL VALUE-PROBLEM; ILL-POSED PROBLEMS; REGULARIZATION METHODS; CAUCHY-PROBLEM; ORDER; SATURATION; OPTIMALITY; MODEL;
D O I
10.1016/j.camwa.2021.04.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instability for the problem. In order to overcome the ill-posedness of the problem, we apply a modified version of quasi-boundary value method to construct stable approximation problem. Using a Holder-type smoothness assumption of the exact solution it is shown that estimates achieve optimal rates of convergence in Hilbert scales both for an a-priori and for an a-posteriori parameter choice strategies.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条
  • [1] BACKWARD PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION
    Jia, Junxiong
    Peng, Jigen
    Gao, Jinghuai
    Li, Yujiao
    [J]. INVERSE PROBLEMS AND IMAGING, 2018, 12 (03) : 773 - 799
  • [2] On a time-space fractional backward diffusion problem with inexact orders
    Dang Duc Trong
    Dinh Nguyen Duy Hai
    Nguyen Minh Dien
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1572 - 1593
  • [3] Galerkin Method for a Backward Problem of Time-Space Fractional Symmetric Diffusion Equation
    Zhang, Hongwu
    Lv, Yong
    [J]. SYMMETRY-BASEL, 2023, 15 (05):
  • [4] A Tikhonov regularization method for solving a backward time-space fractional diffusion problem
    Feng, Xiaoli
    Zhao, Meixia
    Qian, Zhi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
  • [5] A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations
    Djennadi, Smina
    Shawagfeh, Nabil
    Abu Arqub, Omar
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 150
  • [6] Block splitting preconditioner for time-space fractional diffusion equations
    Luo, Jia-Min
    Li, Hou-Biao
    Wei, Wei-Bo
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (03): : 780 - 797
  • [7] Block preconditioning strategies for time-space fractional diffusion equations
    Chen, Hao
    Zhang, Tongtong
    Lv, Wen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 41 - 53
  • [8] Finite difference scheme for the time-space fractional diffusion equations
    Cao, Jianxiong
    Li, Changpin
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1440 - 1456
  • [9] Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales
    Dinh Nguyen Duy Hai
    Dang Duc Trong
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 107
  • [10] On a backward problem for inhomogeneous time-fractional diffusion equations
    Nguyen Hoang Luc
    Le Nhat Huynh
    Nguyen Huy Tuan
    Le Dinh Long
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1317 - 1333