A time-space fractional parabolic type problem: weak, strong and classical solutions

被引:0
|
作者
Idczak, Dariusz [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Banacha 22, PL-90382 Lodz, Poland
关键词
Riemann-Liouville derivative; Fractional Dirichlet-Laplace operator; Fractional abstract parabolic equation; Fractional diffusion; EQUATIONS;
D O I
10.1007/s13540-024-00363-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a generalized Riemann-Liouville type derivative of an abstract function of one variable and existence of a weak solution to an abstract fractional parabolic problem on [0, T] containing Riemann-Liouville derivative of a function of one variable and spectral fractional powers of a weak Dirichlet-Laplace operator to study existence of a strong solution to this problem. Our goal in this regard is to provide conditions that allow the transition from a weak to a strong solution. Next, we passage from the abstract problem to a classical one on [0,T]x Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T]\times \varOmega $$\end{document}, containing partial (with respect to time t is an element of[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,T]\,$$\end{document}) Riemann-Liouville derivative of the unknown real-valued function of two variables and fractional powers of a weak Dirichlet-Laplacian of this function (with respect to spatial variable x is an element of Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \varOmega $$\end{document}). The most important in this regard is a theorem on the relation of the fractional derivatives of an abstract function of one variable and real-valued one of two variables.
引用
收藏
页码:93 / 116
页数:24
相关论文
共 50 条
  • [21] Persistence phenomena of classical solutions to a fractional Keller-Segel model with time-space dependent logistic source
    Zhang, Weiyi
    Liu, Zuhan
    Zhou, Ling
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 11683 - 11713
  • [22] Life span of blowing-up solutions to the Cauchy problem for a time-space fractional diffusion equation
    Nabti, Abderrazak
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1302 - 1316
  • [23] The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation
    Fan Yang
    Qu Pu
    Xiao-Xiao Li
    Numerical Algorithms, 2021, 87 : 1229 - 1255
  • [24] Blow-up of Solutions for a Time-space Fractional Evolution System
    Yong Qiang XU
    Zhong TAN
    Acta Mathematica Sinica,English Series, 2013, (06) : 1067 - 1074
  • [25] QUANTUM AND CLASSICAL STRONG DIRECT PRODUCT THEOREMS AND OPTIMAL TIME-SPACE TRADEOFFS
    Klauck, Hartmut
    Spalek, Robert
    De Wolf, Ronald
    SIAM JOURNAL ON COMPUTING, 2007, 36 (05) : 1472 - 1493
  • [26] New solutions of time-space fractional coupled Schrödinger systems
    Qayyum, Mubashir
    Ahmad, Efaza
    Ahmad, Hijaz
    Almohsen, Bandar
    AIMS MATHEMATICS, 2023, 8 (11): : 27033 - 27051
  • [27] Qualitative properties of solutions to a nonlinear time-space fractional diffusion equation
    Borikhanov, Meiirkhan. B. B.
    Ruzhansky, Michael
    Torebek, Berikbol. T. T.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (01) : 111 - 146
  • [28] An Inverse Problem for a Non-Homogeneous Time-Space Fractional Equation
    El Hamidi, Abdallah
    Kirane, Mokhtar
    Tfayli, Ali
    MATHEMATICS, 2022, 10 (15)
  • [29] Quantum and classical strong direct product theorems and optimal time-space tradeoffs
    Klauck, H
    Spalek, R
    de Wolf, R
    45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 12 - 21
  • [30] Difference numerical solutions for time-space fractional advection diffusion equation
    Zhang, Fangfang
    Gao, Xiaoyang
    Xie, Zhaokun
    BOUNDARY VALUE PROBLEMS, 2019,