A time-space fractional parabolic type problem: weak, strong and classical solutions

被引:0
|
作者
Idczak, Dariusz [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Banacha 22, PL-90382 Lodz, Poland
关键词
Riemann-Liouville derivative; Fractional Dirichlet-Laplace operator; Fractional abstract parabolic equation; Fractional diffusion; EQUATIONS;
D O I
10.1007/s13540-024-00363-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a generalized Riemann-Liouville type derivative of an abstract function of one variable and existence of a weak solution to an abstract fractional parabolic problem on [0, T] containing Riemann-Liouville derivative of a function of one variable and spectral fractional powers of a weak Dirichlet-Laplace operator to study existence of a strong solution to this problem. Our goal in this regard is to provide conditions that allow the transition from a weak to a strong solution. Next, we passage from the abstract problem to a classical one on [0,T]x Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T]\times \varOmega $$\end{document}, containing partial (with respect to time t is an element of[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,T]\,$$\end{document}) Riemann-Liouville derivative of the unknown real-valued function of two variables and fractional powers of a weak Dirichlet-Laplacian of this function (with respect to spatial variable x is an element of Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \varOmega $$\end{document}). The most important in this regard is a theorem on the relation of the fractional derivatives of an abstract function of one variable and real-valued one of two variables.
引用
收藏
页码:93 / 116
页数:24
相关论文
共 50 条
  • [41] An inverse time-dependent source problem for a time-space fractional diffusion equation
    Li, Y. S.
    Wei, T.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 257 - 271
  • [42] On a time-space fractional diffusion equation with a semilinear source of exponential type
    Nguyen, Anh Tuan
    Yang, Chao
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1354 - 1373
  • [43] Mild and classical solutions to fractional Cauchy problem on time scales
    Al-Omari, Ahmad
    Al-Saadi, Hanan
    HELIYON, 2024, 10 (11)
  • [44] S-Asymptotically Periodic Solutions for Time-Space Fractional Evolution Equation
    Qiang Li
    Lishan Liu
    Mei Wei
    Mediterranean Journal of Mathematics, 2021, 18
  • [45] Galerkin Method for a Backward Problem of Time-Space Fractional Symmetric Diffusion Equation
    Zhang, Hongwu
    Lv, Yong
    SYMMETRY-BASEL, 2023, 15 (05):
  • [46] A Tikhonov regularization method for solving a backward time-space fractional diffusion problem
    Feng, Xiaoli
    Zhao, Meixia
    Qian, Zhi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
  • [47] Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation
    Zhang, Yuan-Xiang
    Jia, Junxiong
    Yan, Liang
    INVERSE PROBLEMS, 2018, 34 (12)
  • [48] Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source
    Nabti, Abderrazak
    Alsaedi, Ahmed
    Kirane, Mokhtar
    Ahmad, Bashir
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [49] GENERATION AND SOLUTIONS TO THE TIME-SPACE FRACTIONAL COUPLED NAVIER-STOKES EQUATIONS
    Lu, Chang-Na
    Chang, Sheng-Xiang
    Xie, Luo-Yan
    Zhang, Zong-Guo
    THERMAL SCIENCE, 2020, 24 (06): : 3899 - 3905
  • [50] Analytical Solutions, Moments, and Their Asymptotic Behaviors for the Time-Space Fractional Cable Equation
    李灿
    邓伟华
    CommunicationsinTheoreticalPhysics, 2014, 62 (07) : 54 - 60