Identifying genetic variants that influence the abundance of cell states in single-cell data

被引:1
|
作者
Rumker, Laurie [1 ,2 ,3 ,4 ,5 ,6 ]
Sakaue, Saori [1 ,2 ,3 ,4 ,6 ]
Reshef, Yakir [1 ,2 ,3 ,4 ,6 ]
Kang, Joyce B. [1 ,2 ,3 ,4 ,5 ,6 ]
Yazar, Seyhan [7 ,8 ]
Alquicira-Hernandez, Jose [1 ,2 ,3 ,4 ,6 ,7 ]
Valencia, Cristian [1 ,2 ,3 ,4 ,6 ]
Lagattuta, Kaitlyn A. [1 ,2 ,3 ,4 ,5 ,6 ]
Mah-Som, Annelise [2 ,3 ]
Nathan, Aparna [1 ,2 ,3 ,4 ,5 ,6 ]
Powell, Joseph E. [7 ,8 ]
Loh, Po-Ru [1 ,2 ,3 ,6 ]
Raychaudhuri, Soumya [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Brigham & Womens Hosp, Ctr Data Sci, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, Boston, MA 02115 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[6] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[7] Garvan Inst Med Res, Translat Genom, Sydney, NSW, Australia
[8] Univ New South Wales, UNSW Cellular Genom Futures Inst, Sydney, NSW, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
SYSTEMIC-LUPUS-ERYTHEMATOSUS; GENOME-WIDE ASSOCIATION; POLYGENIC SCORES; IMMUNE; LOCI; SUSCEPTIBILITY; PHENOTYPES; TRAITS; RISK;
D O I
10.1038/s41588-024-01909-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Disease risk alleles influence the composition of cells present in the body, but modeling genetic effects on the cell states revealed by single-cell profiling is difficult because variant-associated states may reflect diverse combinations of the profiled cell features that are challenging to predefine. We introduce Genotype-Neighborhood Associations (GeNA), a statistical tool to identify cell-state abundance quantitative trait loci (csaQTLs) in high-dimensional single-cell datasets. Instead of testing associations to predefined cell states, GeNA flexibly identifies the cell states whose abundance is most associated with genetic variants. In a genome-wide survey of single-cell RNA sequencing peripheral blood profiling from 969 individuals, GeNA identifies five independent loci associated with shifts in the relative abundance of immune cell states. For example, rs3003-T (P = 1.96 x 10-11) associates with increased abundance of natural killer cells expressing tumor necrosis factor response programs. This csaQTL colocalizes with increased risk for psoriasis, an autoimmune disease that responds to anti-tumor necrosis factor treatments. Flexibly characterizing csaQTLs for granular cell states may help illuminate how genetic background alters cellular composition to confer disease risk. GeNA identifies cell-state abundance quantitative trait loci (csaQTLs) in single-cell RNA sequencing data. Applied to OneK1K, GeNA identifies natural killer cell and myeloid csaQTLs and implicates interferon-alpha-related cell states using a polygenic risk score for systemic lupus erythematosus.
引用
收藏
页码:2068 / 2077
页数:23
相关论文
共 50 条
  • [41] Tree inference for single-cell data
    Katharina Jahn
    Jack Kuipers
    Niko Beerenwinkel
    Genome Biology, 17
  • [42] Semisoft clustering of single-cell data
    Zhu, Lingxue
    Lei, Jing
    Klei, Lambertus
    Devlin, Bernie
    Roeder, Kathryn
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (02) : 466 - 471
  • [43] Identifying single-cell molecular programs by stochastic profiling
    Janes, Kevin A.
    Wang, Chun-Chao
    Holmberg, Karin J.
    Cabral, Kristin
    Brugge, Joan S.
    NATURE METHODS, 2010, 7 (04) : 311 - 317
  • [44] Identifying single-cell molecular programs by stochastic profiling
    Janes K.A.
    Wang C.-C.
    Holmberg K.J.
    Cabral K.
    Brugge J.S.
    Nature Methods, 2010, 7 (4) : 311 - 317
  • [45] Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data
    Huang, Guo-Hua
    Zhang, Yu-Hang
    Chen, Lei
    Li, You
    Huang, Tao
    Cai, Yu-Dong
    LIFE-BASEL, 2021, 11 (09):
  • [46] Identifying Cell-Type Specific Genes and Expression Rules Based on Single-Cell Transcriptomic Atlas Data
    Yuan, Fei
    Pan, Xiao Yong
    Zeng, Tao
    Zhang, Yu-Hang
    Chen, Lei
    Gan, Zijun
    Huangs, Tao
    Cai, Yu-Dong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8 (08):
  • [47] SCeQTL: an R package for identifying eQTL from single-cell parallel sequencing data
    Yue Hu
    Xi Xi
    Qian Yang
    Xuegong Zhang
    BMC Bioinformatics, 21
  • [48] Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data
    Duanchen Sun
    Xiangnan Guan
    Amy E. Moran
    Ling-Yun Wu
    David Z. Qian
    Pepper Schedin
    Mu-Shui Dai
    Alexey V. Danilov
    Joshi J. Alumkal
    Andrew C. Adey
    Paul T. Spellman
    Zheng Xia
    Nature Biotechnology, 2022, 40 : 527 - 538
  • [49] iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects
    Liu, Yunqing
    Zhao, Jiayi
    Adams, Taylor S.
    Wang, Ningya
    Schupp, Jonas C.
    Wu, Weimiao
    McDonough, John E.
    Chupp, Geoffrey L.
    Kaminski, Naftali
    Wang, Zuoheng
    Yan, Xiting
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [50] Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data
    Sun, Duanchen
    Guan, Xiangnan
    Moran, Amy E.
    Wu, Ling-Yun
    Qian, David Z.
    Schedin, Pepper
    Dai, Mu-Shui
    Danilov, Alexey, V
    Alumkal, Joshi J.
    Adey, Andrew C.
    Spellman, Paul T.
    Xia, Zheng
    NATURE BIOTECHNOLOGY, 2022, 40 (04) : 527 - +