Identifying genetic variants that influence the abundance of cell states in single-cell data

被引:1
|
作者
Rumker, Laurie [1 ,2 ,3 ,4 ,5 ,6 ]
Sakaue, Saori [1 ,2 ,3 ,4 ,6 ]
Reshef, Yakir [1 ,2 ,3 ,4 ,6 ]
Kang, Joyce B. [1 ,2 ,3 ,4 ,5 ,6 ]
Yazar, Seyhan [7 ,8 ]
Alquicira-Hernandez, Jose [1 ,2 ,3 ,4 ,6 ,7 ]
Valencia, Cristian [1 ,2 ,3 ,4 ,6 ]
Lagattuta, Kaitlyn A. [1 ,2 ,3 ,4 ,5 ,6 ]
Mah-Som, Annelise [2 ,3 ]
Nathan, Aparna [1 ,2 ,3 ,4 ,5 ,6 ]
Powell, Joseph E. [7 ,8 ]
Loh, Po-Ru [1 ,2 ,3 ,6 ]
Raychaudhuri, Soumya [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Brigham & Womens Hosp, Ctr Data Sci, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, Boston, MA 02115 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[6] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[7] Garvan Inst Med Res, Translat Genom, Sydney, NSW, Australia
[8] Univ New South Wales, UNSW Cellular Genom Futures Inst, Sydney, NSW, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
SYSTEMIC-LUPUS-ERYTHEMATOSUS; GENOME-WIDE ASSOCIATION; POLYGENIC SCORES; IMMUNE; LOCI; SUSCEPTIBILITY; PHENOTYPES; TRAITS; RISK;
D O I
10.1038/s41588-024-01909-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Disease risk alleles influence the composition of cells present in the body, but modeling genetic effects on the cell states revealed by single-cell profiling is difficult because variant-associated states may reflect diverse combinations of the profiled cell features that are challenging to predefine. We introduce Genotype-Neighborhood Associations (GeNA), a statistical tool to identify cell-state abundance quantitative trait loci (csaQTLs) in high-dimensional single-cell datasets. Instead of testing associations to predefined cell states, GeNA flexibly identifies the cell states whose abundance is most associated with genetic variants. In a genome-wide survey of single-cell RNA sequencing peripheral blood profiling from 969 individuals, GeNA identifies five independent loci associated with shifts in the relative abundance of immune cell states. For example, rs3003-T (P = 1.96 x 10-11) associates with increased abundance of natural killer cells expressing tumor necrosis factor response programs. This csaQTL colocalizes with increased risk for psoriasis, an autoimmune disease that responds to anti-tumor necrosis factor treatments. Flexibly characterizing csaQTLs for granular cell states may help illuminate how genetic background alters cellular composition to confer disease risk. GeNA identifies cell-state abundance quantitative trait loci (csaQTLs) in single-cell RNA sequencing data. Applied to OneK1K, GeNA identifies natural killer cell and myeloid csaQTLs and implicates interferon-alpha-related cell states using a polygenic risk score for systemic lupus erythematosus.
引用
收藏
页码:2068 / 2077
页数:23
相关论文
共 50 条
  • [31] Interpretation of T cell states from single-cell transcriptomics data using reference atlases
    Massimo Andreatta
    Jesus Corria-Osorio
    Sören Müller
    Rafael Cubas
    George Coukos
    Santiago J. Carmona
    Nature Communications, 12
  • [32] Interpretation of T cell states from single-cell transcriptomics data using reference atlases
    Andreatta, Massimo
    Corria-Osorio, Jesus
    Muller, Soren
    Cubas, Rafael
    Coukos, George
    Carmona, Santiago J.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [33] Identifying Genetic Signatures from Single-Cell RNA Sequencing Data by Matrix Imputation and Reduced Set Gene Clustering
    Seth, Soumita
    Mallik, Saurav
    Islam, Atikul
    Bhadra, Tapas
    Roy, Arup
    Singh, Pawan Kumar
    Li, Aimin
    Zhao, Zhongming
    MATHEMATICS, 2023, 11 (20)
  • [34] Integrative analysis of single-cell transcriptomics and genetic associations identify cell states associated with vascular disease
    Pepin, Mark E.
    Schwartzman, William E.
    Fang, Shi
    Vellarikkal, Shamsudheen K.
    Atri, Deepak S.
    Reddy, Ankith
    Xu, Qiaohan
    Hamel, Andrew R.
    Billaud, Marie
    Segre, Ayellet V.
    Gupta, Rajat M.
    ATHEROSCLEROSIS, 2025, 403
  • [36] Regulation of dynamic pigment cell states at single-cell resolution
    Perillo, Margherita
    Oulhen, Nathalie
    Foster, Stephany
    Spurrell, Maxwell
    Calestani, Cristina
    Wessel, Gary
    ELIFE, 2020, 9
  • [37] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    CELL, 2019, 177 (07) : 1888 - +
  • [38] Putting (single-cell) data into orbit
    Crosta, Giovanni Franco
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XVII, 2019, 10881
  • [39] Tree inference for single-cell data
    Jahn, Katharina
    Kuipers, Jack
    Beerenwinkel, Niko
    GENOME BIOLOGY, 2016, 17
  • [40] Disentanglement of single-cell data with biolord
    Piran, Zoe
    Cohen, Niv
    Hoshen, Yedid
    Nitzan, Mor
    NATURE BIOTECHNOLOGY, 2024, 42 (11) : 1678 - 1683