Identifying genetic variants that influence the abundance of cell states in single-cell data

被引:1
|
作者
Rumker, Laurie [1 ,2 ,3 ,4 ,5 ,6 ]
Sakaue, Saori [1 ,2 ,3 ,4 ,6 ]
Reshef, Yakir [1 ,2 ,3 ,4 ,6 ]
Kang, Joyce B. [1 ,2 ,3 ,4 ,5 ,6 ]
Yazar, Seyhan [7 ,8 ]
Alquicira-Hernandez, Jose [1 ,2 ,3 ,4 ,6 ,7 ]
Valencia, Cristian [1 ,2 ,3 ,4 ,6 ]
Lagattuta, Kaitlyn A. [1 ,2 ,3 ,4 ,5 ,6 ]
Mah-Som, Annelise [2 ,3 ]
Nathan, Aparna [1 ,2 ,3 ,4 ,5 ,6 ]
Powell, Joseph E. [7 ,8 ]
Loh, Po-Ru [1 ,2 ,3 ,6 ]
Raychaudhuri, Soumya [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Brigham & Womens Hosp, Ctr Data Sci, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, Boston, MA 02115 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[6] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[7] Garvan Inst Med Res, Translat Genom, Sydney, NSW, Australia
[8] Univ New South Wales, UNSW Cellular Genom Futures Inst, Sydney, NSW, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
SYSTEMIC-LUPUS-ERYTHEMATOSUS; GENOME-WIDE ASSOCIATION; POLYGENIC SCORES; IMMUNE; LOCI; SUSCEPTIBILITY; PHENOTYPES; TRAITS; RISK;
D O I
10.1038/s41588-024-01909-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Disease risk alleles influence the composition of cells present in the body, but modeling genetic effects on the cell states revealed by single-cell profiling is difficult because variant-associated states may reflect diverse combinations of the profiled cell features that are challenging to predefine. We introduce Genotype-Neighborhood Associations (GeNA), a statistical tool to identify cell-state abundance quantitative trait loci (csaQTLs) in high-dimensional single-cell datasets. Instead of testing associations to predefined cell states, GeNA flexibly identifies the cell states whose abundance is most associated with genetic variants. In a genome-wide survey of single-cell RNA sequencing peripheral blood profiling from 969 individuals, GeNA identifies five independent loci associated with shifts in the relative abundance of immune cell states. For example, rs3003-T (P = 1.96 x 10-11) associates with increased abundance of natural killer cells expressing tumor necrosis factor response programs. This csaQTL colocalizes with increased risk for psoriasis, an autoimmune disease that responds to anti-tumor necrosis factor treatments. Flexibly characterizing csaQTLs for granular cell states may help illuminate how genetic background alters cellular composition to confer disease risk. GeNA identifies cell-state abundance quantitative trait loci (csaQTLs) in single-cell RNA sequencing data. Applied to OneK1K, GeNA identifies natural killer cell and myeloid csaQTLs and implicates interferon-alpha-related cell states using a polygenic risk score for systemic lupus erythematosus.
引用
收藏
页码:2068 / 2077
页数:23
相关论文
共 50 条
  • [21] A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Li, Hong-Dong
    Xu, Yunpei
    Guo, Lilu
    Wu, Fang-Xiang
    Duan, Guihua
    Wang, Jianxin
    GENES, 2019, 10 (02)
  • [22] Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data
    Martin Barron
    Jun Li
    Scientific Reports, 6
  • [23] SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
    Kang, Senbai
    Borgsmueller, Nico
    Valecha, Monica
    Kuipers, Jack
    Alves, Joao M.
    Prado-Lopez, Sonia
    Chantada, Debora
    Beerenwinkel, Niko
    Posada, David
    Szczurek, Ewa
    GENOME BIOLOGY, 2022, 23 (01)
  • [24] SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
    Senbai Kang
    Nico Borgsmüller
    Monica Valecha
    Jack Kuipers
    Joao M. Alves
    Sonia Prado-López
    Débora Chantada
    Niko Beerenwinkel
    David Posada
    Ewa Szczurek
    Genome Biology, 23
  • [25] DeepCCI: a deep learning framework for identifying cell-cell interactions from single-cell RNA sequencing data
    Yang, Wenyi
    Wang, Pingping
    Luo, Meng
    Cai, Yideng
    Xu, Chang
    Xue, Guangfu
    Jin, Xiyun
    Cheng, Rui
    Que, Jinhao
    Pang, Fenglan
    Yang, Yuexin
    Nie, Huan
    Jiang, Qinghua
    Liu, Zhigang
    Xu, Zhaochun
    BIOINFORMATICS, 2023, 39 (10)
  • [26] ScLinear predicts protein abundance at single-cell resolution
    Hanhart, Daniel
    Gossi, Federico
    Rapsomaniki, Maria Anna
    Kruithof-de Julio, Marianna
    Chouvardas, Panagiotis
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [27] ScLinear predicts protein abundance at single-cell resolution
    Daniel Hanhart
    Federico Gossi
    Maria Anna Rapsomaniki
    Marianna Kruithof-de Julio
    Panagiotis Chouvardas
    Communications Biology, 7
  • [28] Pathogenic variants damage cell composition and single-cell transcription in cardiomyopathies
    Reichart, Daniel
    Lindberg, Eric L.
    Maatz, Henrike
    Miranda, Antonio M. A.
    Viveiros, Anissa
    Shvetsov, Nikolay
    Gaertner, Anna
    Nadelmann, Emily R.
    Lee, Michael
    Kanemaru, Kazumasa
    Ruiz-Orera, Jorge
    Strohmenger, Viktoria
    DeLaughter, Daniel M.
    Patone, Giannino
    Zhang, Hao
    Woehler, Andrew
    Lippert, Christoph
    Kim, Yuri
    Adami, Eleonora
    Gorham, Joshua M.
    Barnett, Sam N.
    Brown, Kemar
    Buchan, Rachel J.
    Chowdhury, Rasheda A.
    Constantinou, Chrystalla
    Cranley, James
    Felkin, Leanne E.
    Fox, Henrik
    Ghauri, Ahla
    Gummert, Jan
    Kanda, Masatoshi
    Li, Ruoyan
    Mach, Lukas
    McDonough, Barbara
    Samari, Sara
    Shahriaran, Farnoush
    Yapp, Clarence
    Stanasiuk, Caroline
    Theotokis, Pantazis, I
    Theis, Fabian J.
    van den Bogaerdt, Antoon
    Wakimoto, Hiroko
    Ware, James S.
    Worth, Catherine L.
    Barton, Paul J. R.
    Lee, Young-Ae
    Teichmann, Sarah A.
    Milting, Hendrik
    Noseda, Michela
    Oudit, Gavin Y.
    SCIENCE, 2022, 377 (6606) : 619 - +
  • [29] Integrating leiomyoma genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types
    Buyukcelebi, Kadir
    Duval, Alexander J.
    Abdula, Fatih
    Elkafas, Hoda
    Seker-Polat, Fidan
    Adli, Mazhar
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [30] Integrating leiomyoma genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types
    Kadir Buyukcelebi
    Alexander J. Duval
    Fatih Abdula
    Hoda Elkafas
    Fidan Seker-Polat
    Mazhar Adli
    Nature Communications, 15