More on the upper bound of holographic n-partite information

被引:0
|
作者
Ju, Xin-Xiang [1 ]
Pan, Wen-Bin [2 ]
Sun, Ya-Wen [1 ,3 ]
Wang, Yuan-Tai [4 ,5 ]
Zhao, Yang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Phys Sci, Zhongguancun East Rd 80, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, 19B Yuquan Rd, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100049, Peoples R China
[4] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[5] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
AdS-CFT Correspondence; Gauge-Gravity Correspondence; SQUASHED ENTANGLEMENT;
D O I
10.1007/JHEP03(2025)184
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that there exists a huge amount of multipartite entanglement in holography by studying the upper bound for holographic n-partite information In that n - 1 fixed boundary subregions participate. We develop methods to find the n-th region E that makes In reach the upper bound. Through the explicit evaluation, it is shown that In, an IR term without UV divergence, could diverge when the number of intervals or strips in region E approaches infinity. At this upper bound configuration, we could argue that In fully comes from the n-partite global quantum entanglement. Our results indicate: fewer-partite entanglement in holography emerges from more-partite entanglement; n - 1 distant local subregions are highly n-partite entangling. Moreover, the relationship between the convexity of a boundary subregion and the multipartite entanglement it participates, and the difference between multipartite entanglement structure in different dimensions are revealed as well.
引用
收藏
页数:58
相关论文
共 50 条
  • [41] Geometric genuine N-partite entanglement measure for arbitrary dimensions
    Zhao, Hui
    Ma, Pan-Wen
    Fei, Shao-Ming
    Wang, Zhi-Xi
    QUANTUM INFORMATION PROCESSING, 2024, 23 (09)
  • [42] Detection of genuinely entangled and nonseparable n-partite quantum states
    Gao, Ting
    Hong, Yan
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [43] Separability criteria for several classes of n-partite quantum states
    Gao, T.
    Hong, Y.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 61 (03): : 765 - 771
  • [44] Measure and detection of genuine multipartite entanglement for n-partite systems
    Wen Xu
    Zhu-Jun Zheng
    Chuan-Jie Zhu
    Shao-Ming Fei
    The European Physical Journal Plus, 136
  • [45] On the Strong n-partite Tournaments with Exactly Two Cycles of Length n − 1
    Qiao-ping Guo
    Yu-bao Guo
    Sheng-jia Li
    Chun-fang Li
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 710 - 717
  • [46] When n-cycles in n-partite tournaments are longest cycles
    Gutin, G
    Rafiey, A
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 163 - 168
  • [47] 2-CELL IMBEDDINGS OF COMPLETE N-PARTITE GRAPHS
    KRONK, HV
    RINGEISEN, RD
    WHITE, AT
    COLLOQUIUM MATHEMATICUM, 1976, 36 (02) : 295 - 304
  • [48] Strong quantum nonlocality without entanglement in an n-partite system with even n
    Zhou, Huaqi
    Gao, Ting
    Yan, Fengli
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [49] Measure and detection of genuine multipartite entanglement for n-partite systems
    Xu, Wen
    Zheng, Zhu-Jun
    Zhu, Chuan-Jie
    Fei, Shao-Ming
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [50] POINT-OUTER-THICKNESS OF COMPLETE N-PARTITE GRAPHS
    MITCHEM, J
    COMPOSITIO MATHEMATICA, 1974, 29 (01) : 55 - 61