When n-cycles in n-partite tournaments are longest cycles

被引:1
|
作者
Gutin, G [1 ]
Rafiey, A [1 ]
机构
[1] Univ London Royal Holloway & Bedford New Coll, Dept Comp Sci, Egham TW20 0EX, Surrey, England
关键词
n-partite tournament; longest cycles; short cycles;
D O I
10.1016/j.disc.2004.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n-tournament is an orientation of a complete n-partite graph. It was proved by J.A. Bondy in 1976 that every strong n-partite tournament has an n-cycle. We characterize strong n-partite tournaments in which a longest cycle is of length n and, thus, settle a problem in Volkmann (Discrete Math. 199 (1999) 279). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [1] On the Strong n-partite Tournaments with Exactly Two Cycles of Length n − 1
    Qiao-ping Guo
    Yu-bao Guo
    Sheng-jia Li
    Chun-fang Li
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 710 - 717
  • [2] ON THE n-PARTITE TOURNAMENTS WITH EXACTLY n - m+1 CYCLES OF LENGTH m
    Guo, Qiaoping
    Meng, Wei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 75 - 82
  • [3] On the Strong n-partite Tournaments with Exactly Two Cycles of Length n-1
    Qiao-ping GUO
    Yu-bao GUO
    Sheng-jia LI
    Chun-fang LI
    Acta Mathematicae Applicatae Sinica, 2018, 34 (04) : 710 - 717
  • [4] On the Strong n-partite Tournaments with Exactly Two Cycles of Length n-1
    Guo, Qiao-ping
    Guo, Yu-bao
    Li, Sheng-jia
    Li, Chun-fang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 710 - 717
  • [5] THE RADII OF N-PARTITE TOURNAMENTS
    GUTIN, GM
    MATHEMATICAL NOTES, 1986, 40 (3-4) : 743 - 744
  • [6] On n-partite tournaments with unique n-cycle
    Gutin, Gregory
    Rafiey, Arash
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2006, 22 (02) : 241 - 249
  • [7] On n-partite Tournaments with Unique n-cycle
    Gregory Gutin
    Arash Rafiey
    Anders Yeo
    Graphs and Combinatorics, 2006, 22 : 241 - 249
  • [8] Longest cycles in almost regular 3-partite tournaments
    Volkmann, Lutz
    DISCRETE MATHEMATICS, 2006, 306 (22) : 2931 - 2942
  • [9] EXTENDING PARTIAL AUTOMORPHISMS OF n-PARTITE TOURNAMENTS
    Hubicka, J.
    Jahel, C.
    Konecny, M.
    Sabok, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 807 - 811
  • [10] Frame patterns in n-cycles
    Jones, Miles
    Kitaev, Sergey
    Remmel, Jeffrey
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1197 - 1215