When n-cycles in n-partite tournaments are longest cycles

被引:1
|
作者
Gutin, G [1 ]
Rafiey, A [1 ]
机构
[1] Univ London Royal Holloway & Bedford New Coll, Dept Comp Sci, Egham TW20 0EX, Surrey, England
关键词
n-partite tournament; longest cycles; short cycles;
D O I
10.1016/j.disc.2004.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n-tournament is an orientation of a complete n-partite graph. It was proved by J.A. Bondy in 1976 that every strong n-partite tournament has an n-cycle. We characterize strong n-partite tournaments in which a longest cycle is of length n and, thus, settle a problem in Volkmann (Discrete Math. 199 (1999) 279). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [41] On n-partite digraphical representations of finite groups
    Du, Jia-Li
    Feng, Yan-Quan
    Spiga, Pablo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 189
  • [42] HOW MANY WAYS CAN A PERMUTATION BE FACTORED INTO 2 N-CYCLES
    WALKUP, DW
    DISCRETE MATHEMATICS, 1979, 28 (03) : 315 - 319
  • [43] A tomography theory for an n-partite entangled system
    Jiang, NQ
    PHYSICS LETTERS A, 2005, 339 (3-5) : 255 - 258
  • [44] On the matching polynomials of the complete n-partite graph
    Nihei, M
    ARS COMBINATORIA, 2001, 60 : 187 - 192
  • [45] On the time evolution of holographic n-partite information
    Mohsen Alishahiha
    M. Reza Mohammadi Mozaffar
    Mohammad Reza Tanhayi
    Journal of High Energy Physics, 2015
  • [46] NUMBER OF TREES IN A COMPLETE N-PARTITE GRAPH
    ONODERA, R
    MATRIX AND TENSOR QUARTERLY, 1973, 23 (04): : 142 - 146
  • [47] Strong quantum nonlocality in N-partite systems
    Shi, Fei
    Ye, Zuo
    Chen, Lin
    Zhang, Xiande
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [48] Componentwise complementary cycles in almost regular 3-partite tournaments
    He, Zhihong
    Li, Guojun
    Ding, Dawei
    Liu, Quanhui
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 347 - +
  • [49] Genuinely entangled symmetric states with no N-partite correlations
    Designolle, S.
    Giraud, O.
    Martin, J.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [50] On the number of 7-cycles in regular n-tournaments
    Savchenko, S. V.
    DISCRETE MATHEMATICS, 2017, 340 (02) : 264 - 285