More on the upper bound of holographic n-partite information

被引:0
|
作者
Ju, Xin-Xiang [1 ]
Pan, Wen-Bin [2 ]
Sun, Ya-Wen [1 ,3 ]
Wang, Yuan-Tai [4 ,5 ]
Zhao, Yang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Phys Sci, Zhongguancun East Rd 80, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, 19B Yuquan Rd, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100049, Peoples R China
[4] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[5] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
AdS-CFT Correspondence; Gauge-Gravity Correspondence; SQUASHED ENTANGLEMENT;
D O I
10.1007/JHEP03(2025)184
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that there exists a huge amount of multipartite entanglement in holography by studying the upper bound for holographic n-partite information In that n - 1 fixed boundary subregions participate. We develop methods to find the n-th region E that makes In reach the upper bound. Through the explicit evaluation, it is shown that In, an IR term without UV divergence, could diverge when the number of intervals or strips in region E approaches infinity. At this upper bound configuration, we could argue that In fully comes from the n-partite global quantum entanglement. Our results indicate: fewer-partite entanglement in holography emerges from more-partite entanglement; n - 1 distant local subregions are highly n-partite entangling. Moreover, the relationship between the convexity of a boundary subregion and the multipartite entanglement it participates, and the difference between multipartite entanglement structure in different dimensions are revealed as well.
引用
收藏
页数:58
相关论文
共 50 条
  • [31] EDGE DOMATIC NUMBERS OF COMPLETE N-PARTITE GRAPHS
    HWANG, SF
    CHANG, GJ
    GRAPHS AND COMBINATORICS, 1994, 10 (03) : 241 - 248
  • [32] Discovering homographs using N-partite graph clustering
    Nakawatase, H
    Aizawa, A
    DISCOVERY SCIENCE, PROCEEDINGS, 2003, 2843 : 402 - 409
  • [33] Global entanglement and coherent states in an N-partite system
    Domotor, P.
    Benedict, M. G.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 53 (02): : 237 - 242
  • [34] Only n-qubit Greenberger-Horne-Zeilinger states contain n-partite information
    Walck, Scott N.
    Lyons, David W.
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [35] On the equitable chromatic number of complete n-partite graphs
    Lam, PCB
    Shiu, WC
    Tong, CS
    Zhang, ZF
    DISCRETE APPLIED MATHEMATICS, 2001, 113 (2-3) : 307 - 310
  • [36] TRIANGULAR IMBEDDINGS OF REGULAR COMPLETE N-PARTITE GRAPHS
    WHITE, AT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A36 - A36
  • [37] The lower and upper forcing geodetic numbers of complete n-partite graphs, n-dimensional meshes and tori
    Wang, Fu-Hsing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (12) : 2677 - 2687
  • [38] Stronger Criteria for Nonseparability in n-Partite Quantum States
    Yao Lu
    Gui Lu Long
    Ting Gao
    International Journal of Theoretical Physics, 2013, 52 : 699 - 705
  • [39] An evolutionary algorithm method for sampling N-partite graphs
    Goldstein, ML
    Yen, GG
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 2250 - 2257
  • [40] Separability criteria for several classes of n-partite quantum states
    T. Gao
    Y. Hong
    The European Physical Journal D, 2011, 61 : 765 - 771