More on the upper bound of holographic n-partite information

被引:0
|
作者
Ju, Xin-Xiang [1 ]
Pan, Wen-Bin [2 ]
Sun, Ya-Wen [1 ,3 ]
Wang, Yuan-Tai [4 ,5 ]
Zhao, Yang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Phys Sci, Zhongguancun East Rd 80, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, 19B Yuquan Rd, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100049, Peoples R China
[4] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[5] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
AdS-CFT Correspondence; Gauge-Gravity Correspondence; SQUASHED ENTANGLEMENT;
D O I
10.1007/JHEP03(2025)184
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that there exists a huge amount of multipartite entanglement in holography by studying the upper bound for holographic n-partite information In that n - 1 fixed boundary subregions participate. We develop methods to find the n-th region E that makes In reach the upper bound. Through the explicit evaluation, it is shown that In, an IR term without UV divergence, could diverge when the number of intervals or strips in region E approaches infinity. At this upper bound configuration, we could argue that In fully comes from the n-partite global quantum entanglement. Our results indicate: fewer-partite entanglement in holography emerges from more-partite entanglement; n - 1 distant local subregions are highly n-partite entangling. Moreover, the relationship between the convexity of a boundary subregion and the multipartite entanglement it participates, and the difference between multipartite entanglement structure in different dimensions are revealed as well.
引用
收藏
页数:58
相关论文
共 50 条
  • [21] On the matching polynomials of the complete n-partite graph
    Nihei, M
    ARS COMBINATORIA, 2001, 60 : 187 - 192
  • [22] On n-partite tournaments with unique n-cycle
    Gutin, Gregory
    Rafiey, Arash
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2006, 22 (02) : 241 - 249
  • [23] On n-partite Tournaments with Unique n-cycle
    Gregory Gutin
    Arash Rafiey
    Anders Yeo
    Graphs and Combinatorics, 2006, 22 : 241 - 249
  • [24] EXTENDING PARTIAL AUTOMORPHISMS OF n-PARTITE TOURNAMENTS
    Hubicka, J.
    Jahel, C.
    Konecny, M.
    Sabok, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 807 - 811
  • [25] NUMBER OF TREES IN A COMPLETE N-PARTITE GRAPH
    ONODERA, R
    MATRIX AND TENSOR QUARTERLY, 1973, 23 (04): : 142 - 146
  • [26] Strong quantum nonlocality in N-partite systems
    Shi, Fei
    Ye, Zuo
    Chen, Lin
    Zhang, Xiande
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [27] Genuinely entangled symmetric states with no N-partite correlations
    Designolle, S.
    Giraud, O.
    Martin, J.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [28] A(k+1)-partite entanglement measure of N-partite quantum states
    Hong, Yan
    Qi, Xianfei
    Gao, Ting
    Yan, Fengli
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (12):
  • [29] THE FACTOR-INDEXES OF COMPLETE N-PARTITE GRAPHS
    PENG, YH
    CHEN, CC
    KOH, KM
    ARS COMBINATORIA, 1993, 35 : 69 - 83
  • [30] Stronger Criteria for Nonseparability in n-Partite Quantum States
    Lu, Yao
    Long, Gui Lu
    Gao, Ting
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (03) : 699 - 705