A fully incremental simple triangular multilayer Kirchhoff-Love shell element

被引:0
|
作者
Gomes, Gustavo Canario [1 ]
Pimenta, Paulo de Mattos [1 ]
Sanchez, Matheus Lucci [1 ]
Ibrahimbegovic, Adnan [2 ]
机构
[1] Univ Sao Paulo, Polytech Sch, Sao Paulo, Brazil
[2] Univ Technol Compiegne, Alliance Sorbonne Univ, Lab Roberval Mecan, Compiegne, France
来源
关键词
Triangular Shell Element; Multilayer shell; Nonlinear Shell Formulation; Kirchhoff-Love shell; Large Strain; FINITE-ELEMENT; MODEL;
D O I
10.1590/1679-78258159
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a new triangular multi-layer nonlinear shell finite element with incremental degrees of freedom, suitable for large displacements and rotations. This is a nonconforming element with 6 nodes, quadratic displacement and linear rotation field based on Rodrigues incremental rotation parameters, with a total of 21 DoFs. The novelty of this element is the extension to a multilayer, fully incremental situation of the T6-3iKL element, a kinematical model with properties from Kirchhoff-Love theory, approximating the shell director across layers as constant. The model is numerically implemented, and results are compared to different references in multiple examples, showing the capabilities of the formulation. It is believed that the possibly simplest multilayer extension, combined with fully incremental DoFs, simple kinematic, no necessity of artificial parameters such as penalties, a relatively small number of DoFs, possibility to use various 3D material models, easily connected with multiple branched shells and beams, and geometric exact theory create a simple yet powerful shell element.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Asymptotic justification of the Kirchhoff-Love hypotheses for a linearly elastic clamped shell
    Lods, V
    Mardare, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07): : 909 - 912
  • [22] An extended isogeometric thin shell analysis based on Kirchhoff-Love theory
    Nguyen-Thanh, N.
    Valizadeh, N.
    Nguyen, M. N.
    Nguyen-Xuan, H.
    Zhuang, X.
    Areias, P.
    Zi, G.
    Bazilevs, Y.
    De Lorenzis, L.
    Rabczuk, T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 : 265 - 291
  • [23] Asymptotic justification of the Kirchhoff-Love assumptions for a linearly elastic clamped shell
    Lods, V
    Mardare, C
    JOURNAL OF ELASTICITY, 2000, 58 (02) : 105 - 154
  • [24] Finite element modeling of Kirchhoff-Love shells as smooth material surfaces
    Vetyukov, Yury
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (1-2): : 150 - 162
  • [25] Isogeometric analysis of fiber reinforced composites using Kirchhoff-Love shell elements
    Schulte, J.
    Dittmann, M.
    Eugster, S. R.
    Hesch, S.
    Reinicke, T.
    dell'Isola, F.
    Hesch, C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 362 (362)
  • [26] A FULLY DISCRETE PLATES COMPLEX ON POLYGONAL MESHES WITH APPLICATION TO THE KIRCHHOFF-LOVE PROBLEM
    Di Pietro, Daniele A.
    Droniou, Jerome
    MATHEMATICS OF COMPUTATION, 2023, 92 (339) : 51 - 77
  • [27] TUBA finite elements: Application to the solution of a nonlinear Kirchhoff-Love shell theory
    Ivannikov, V.
    Tiago, C.
    Pimenta, P. M.
    SHELL STRUCTURES: THEORY AND APPLICATIONS, VOL 3, 2014, : 97 - 100
  • [28] Domain Decomposition Methods and Kirchhoff-Love Shell Multipatch Coupling in Isogeometric Analysis
    Apostolatos, Andreas
    Breitenberger, Michael
    Wuechner, Roland
    Bletzinger, Kai-Uwe
    ISOGEOMETRIC ANALYSIS AND APPLICATIONS 2014, 2015, 107 : 73 - 101
  • [29] An updated Lagrangian framework for Isogeometric Kirchhoff-Love thin-shell analysis
    Alaydin, M. D.
    Benson, D. J.
    Bazilevs, Y.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384
  • [30] A NEW TRIANGULAR DISCRETE KIRCHHOFF PLATE SHELL ELEMENT
    DHATT, G
    MARCOTTE, L
    MATTE, Y
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (03) : 453 - 470