Finite element modeling of Kirchhoff-Love shells as smooth material surfaces

被引:23
|
作者
Vetyukov, Yury [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Tech Mech, A-4040 Linz, Austria
关键词
Classical shell model; material surface; shell finite element; geometric nonlinearity; convergence; GEOMETRICALLY NONLINEAR-ANALYSIS; HYBRID-STRESS; FORMULATION; DEFORMATION;
D O I
10.1002/zamm.201200179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider large deformations of curved thin shells in the framework of a classical Kirchhoff-Love theory for material surfaces. The geometry of the element is approximated via the position vector and its derivatives with respect to the material coordinates at the four nodes, and C-1 continuity of the surface over the interfaces between the elements is guaranteed. Theoretical background provides certainty concerning the boundary conditions, the range of applicability of the model, extensions to multi-field problems, etc. Robust convergence and accuracy of the resulting simple numerical scheme is demonstrated by the analysis of benchmark problems in comparison with other solutions. (C) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:150 / 162
页数:13
相关论文
共 50 条
  • [1] Nonlinear material identification of heterogeneous isogeometric Kirchhoff-Love shells
    Borzeszkowski, Bartosz
    Lubowiecka, Izabela
    Sauer, Roger A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [2] A simple fully nonlinear Kirchhoff-Love shell finite element
    Sanchez, Matheus L.
    Costa e Silva, Catia
    Pimenta, Paulo M.
    [J]. LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2020, 17 (08) : 1 - 16
  • [3] On triangular virtual elements for Kirchhoff-Love shells
    Wu, T. P.
    Pimenta, P. M.
    Wriggers, P.
    [J]. ARCHIVE OF APPLIED MECHANICS, 2024, 94 (09) : 2371 - 2404
  • [4] Kirchhoff-Love Shells with Arbitrary Hyperelastic Materials
    Wen, Jiahao
    Barbic, Jernej
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [5] On the canonical equations of Kirchhoff-Love theory of shells
    Semenyuk, N. P.
    Trach, V. M.
    Merzlyuk, V. V.
    [J]. INTERNATIONAL APPLIED MECHANICS, 2007, 43 (10) : 1149 - 1156
  • [6] On the canonical equations of Kirchhoff-Love theory of shells
    N. P. Semenyuk
    V. M. Trach
    V. V. Merzlyuk
    [J]. International Applied Mechanics, 2007, 43 : 1149 - 1156
  • [7] A new mixed approach to Kirchhoff-Love shells
    Rafetseder, Katharina
    Zulehner, Walter
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 440 - 455
  • [8] Blended isogeometric Kirchhoff-Love and continuum shells
    Liu, Ning
    Johnson, Emily L.
    Rajanna, Manoj R.
    Lua, Jim
    Phan, Nam
    Hsu, Ming-Chen
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 385
  • [9] Isogeometric collocation for Kirchhoff-Love plates and shells
    Maurin, Florian
    Greco, Francesco
    Coox, Laurens
    Vandepitte, Dirk
    Desmet, Wim
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 329 : 396 - 420
  • [10] Smooth multi-patch scaled boundary isogeometric analysis for Kirchhoff-Love shells
    Reichle, Mathias
    Arf, Jeremias
    Simeon, Bernd
    Klinkel, Sven
    [J]. MECCANICA, 2023, 58 (8) : 1693 - 1716