Domain Decomposition Methods and Kirchhoff-Love Shell Multipatch Coupling in Isogeometric Analysis

被引:23
|
作者
Apostolatos, Andreas [1 ]
Breitenberger, Michael [1 ]
Wuechner, Roland [1 ]
Bletzinger, Kai-Uwe [1 ]
机构
[1] Tech Univ Munich, Arcisstr 21, D-80333 Munich, Germany
关键词
FINITE-ELEMENT-METHOD; PENALTY; NURBS;
D O I
10.1007/978-3-319-23315-4_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The necessity for solving the isogeometric Kirchhoff-Love shell problem into multiple domains has been exemplified especially in cases where the geometry comprises multipatches. In fact, geometries taken from Computer Aided Geometric Design involve in principle trimmed multipatches. Herein, the application and comparison of the most common Domain Decomposition Methods for the coupling of Kirchhoff-Love shell multipatches in isogeometric analysis is presented. The investigated methods comprise Penalty and Lagrange Multipliers methods. All methods are extended to account for geometrically nonlinear problems. The aforementioned methods provided highly accurate results, thus extending the Kirchhoff-Love shell analysis from a single to multiple patches which is a prerequisite for solving practical engineering problems using isogeometric analysis.
引用
收藏
页码:73 / 101
页数:29
相关论文
共 50 条
  • [1] Isogeometric shell analysis with Kirchhoff-Love elements
    Kiendl, J.
    Bletzinger, K-U.
    Linhard, J.
    Wuechner, R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (49-52) : 3902 - 3914
  • [2] Penalty coupling of trimmed isogeometric Kirchhoff-Love shell patches
    Proserpio, Davide
    Kiendl, Josef
    JOURNAL OF MECHANICS, 2022, 38 : 156 - 165
  • [3] On penalty-free formulations for multipatch isogeometric Kirchhoff-Love shells
    Goyal, Anmol
    Simeon, Bernd
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 136 : 78 - 103
  • [4] Kirchhoff-Love shell formulation based on triangular isogeometric analysis
    Zareh, Mehrdad
    Qian, Xiaoping
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 853 - 873
  • [5] Modal Synthesis with the Isogeometric Kirchhoff-Love Shell Elements
    Lei, Zhen
    Gillot, Frederic
    Jezequel, Louis
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (02)
  • [6] Isogeometric Kirchhoff-Love shell formulations for biological membranes
    Tepole, Adrian Buganza
    Kabaria, Hardik
    Bletzinger, Kai-Uwe
    Kuhl, Ellen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 293 : 328 - 347
  • [7] A dual domain decomposition algorithm for the analysis of non-conforming isogeometric Kirchhoff-Love shells
    Hirschler, T.
    Bouclier, R.
    Dureisseix, D.
    Duval, A.
    Elguedj, T.
    Morlier, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 357
  • [8] Multi-patch isogeometric analysis for Kirchhoff-Love shell elements
    Schuss, S.
    Dittmann, M.
    Wohlmuth, B.
    Klinkel, S.
    Hesch, C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 349 : 91 - 116
  • [9] An extended isogeometric thin shell analysis based on Kirchhoff-Love theory
    Nguyen-Thanh, N.
    Valizadeh, N.
    Nguyen, M. N.
    Nguyen-Xuan, H.
    Zhuang, X.
    Areias, P.
    Zi, G.
    Bazilevs, Y.
    De Lorenzis, L.
    Rabczuk, T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 : 265 - 291
  • [10] Isogeometric analysis of fiber reinforced composites using Kirchhoff-Love shell elements
    Schulte, J.
    Dittmann, M.
    Eugster, S. R.
    Hesch, S.
    Reinicke, T.
    dell'Isola, F.
    Hesch, C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 362 (362)