Domain Decomposition Methods and Kirchhoff-Love Shell Multipatch Coupling in Isogeometric Analysis

被引:23
|
作者
Apostolatos, Andreas [1 ]
Breitenberger, Michael [1 ]
Wuechner, Roland [1 ]
Bletzinger, Kai-Uwe [1 ]
机构
[1] Tech Univ Munich, Arcisstr 21, D-80333 Munich, Germany
来源
ISOGEOMETRIC ANALYSIS AND APPLICATIONS 2014 | 2015年 / 107卷
关键词
FINITE-ELEMENT-METHOD; PENALTY; NURBS;
D O I
10.1007/978-3-319-23315-4_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The necessity for solving the isogeometric Kirchhoff-Love shell problem into multiple domains has been exemplified especially in cases where the geometry comprises multipatches. In fact, geometries taken from Computer Aided Geometric Design involve in principle trimmed multipatches. Herein, the application and comparison of the most common Domain Decomposition Methods for the coupling of Kirchhoff-Love shell multipatches in isogeometric analysis is presented. The investigated methods comprise Penalty and Lagrange Multipliers methods. All methods are extended to account for geometrically nonlinear problems. The aforementioned methods provided highly accurate results, thus extending the Kirchhoff-Love shell analysis from a single to multiple patches which is a prerequisite for solving practical engineering problems using isogeometric analysis.
引用
收藏
页码:73 / 101
页数:29
相关论文
共 50 条
  • [41] A general-purpose meshfree Kirchhoff-Love shell formulation
    Wang, Jiarui
    Bazilevs, Yuri
    ENGINEERING WITH COMPUTERS, 2024,
  • [42] Meshless implementation of the geometrically exact Kirchhoff-Love shell theory
    Ivannikov, V.
    Tiago, C.
    Pimenta, P. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 100 (01) : 1 - 39
  • [43] Large deformation Kirchhoff-Love shell hierarchically enriched with warping: Isogeometric formulation and modeling of alternating stiff/soft layups
    Magisano, Domenico
    Corrado, Antonella
    Leonetti, Leonardo
    Kiendl, Josef
    Garcea, Giovanni
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [44] On the boundary conditions of the geometrically nonlinear Kirchhoff-Love shell theory
    Ivannikov, V.
    Tiago, C.
    Pimenta, P. M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (18) : 3101 - 3112
  • [45] Gradient-enhanced damage modeling in Kirchhoff-Love shells: Application to isogeometric analysis of composite laminates
    Pigazzini, M. S.
    Kamensky, D.
    van Iersel, D. A. P.
    Alaydin, M. D.
    Remmers, J. J. C.
    Bazilevs, Y.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 152 - 179
  • [46] Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells
    Casquero, Hugo
    Liu, Lei
    Zhang, Yongjie
    Reali, Alessandro
    Kiendl, Josef
    Gomez, Hector
    COMPUTER-AIDED DESIGN, 2017, 82 : 140 - 153
  • [47] A simple fully nonlinear Kirchhoff-Love shell finite element
    Sanchez, Matheus L.
    Costa e Silva, Catia
    Pimenta, Paulo M.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2020, 17 (08) : 1 - 16
  • [48] A new paradigm coupling element-wise discrete-strain gaps with patch-wise reduced integration for efficient isogeometric nonlinear Kirchhoff-Love shell analysis
    Le, Toan Minh
    Nguyen-Xuan, Hung
    Leonetti, Leonardo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 436
  • [49] A reconstructed local (B)over-bar formulation for isogeometric Kirchhoff-Love shells
    Greco, L.
    Cuomo, M.
    Contrafatto, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 332 : 462 - 487
  • [50] Coupling of non-conforming trimmed isogeometric Kirchhoff-Love shells via a projected super-penalty approach
    Coradello, Luca
    Kiendl, Josef
    Buffa, Annalisa
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 387