Domain Decomposition Methods and Kirchhoff-Love Shell Multipatch Coupling in Isogeometric Analysis

被引:23
|
作者
Apostolatos, Andreas [1 ]
Breitenberger, Michael [1 ]
Wuechner, Roland [1 ]
Bletzinger, Kai-Uwe [1 ]
机构
[1] Tech Univ Munich, Arcisstr 21, D-80333 Munich, Germany
来源
ISOGEOMETRIC ANALYSIS AND APPLICATIONS 2014 | 2015年 / 107卷
关键词
FINITE-ELEMENT-METHOD; PENALTY; NURBS;
D O I
10.1007/978-3-319-23315-4_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The necessity for solving the isogeometric Kirchhoff-Love shell problem into multiple domains has been exemplified especially in cases where the geometry comprises multipatches. In fact, geometries taken from Computer Aided Geometric Design involve in principle trimmed multipatches. Herein, the application and comparison of the most common Domain Decomposition Methods for the coupling of Kirchhoff-Love shell multipatches in isogeometric analysis is presented. The investigated methods comprise Penalty and Lagrange Multipliers methods. All methods are extended to account for geometrically nonlinear problems. The aforementioned methods provided highly accurate results, thus extending the Kirchhoff-Love shell analysis from a single to multiple patches which is a prerequisite for solving practical engineering problems using isogeometric analysis.
引用
收藏
页码:73 / 101
页数:29
相关论文
共 50 条
  • [31] Nonlinear material identification of heterogeneous isogeometric Kirchhoff-Love shells
    Borzeszkowski, Bartosz
    Lubowiecka, Izabela
    Sauer, Roger A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [32] Goal-adaptive Meshing of Isogeometric Kirchhoff-Love Shells
    Verhelst, H. M.
    Mantzaflaris, A.
    Moller, M.
    Den Besten, J. H.
    ENGINEERING WITH COMPUTERS, 2024, 40 (06) : 3595 - 3622
  • [33] A stochastic multiscale formulation for isogeometric composite Kirchhoff-Love shells
    Tsapetis, Dimitrios
    Sotiropoulos, Gerasimos
    Stavroulakis, George
    Papadopoulos, Vissarion
    Papadrakakis, Manolis
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
  • [34] T-Splines for Isogeometric Analysis of the Large Deformation of Elastoplastic Kirchhoff-Love Shells
    Guo, Mayi
    Wang, Wei
    Zhao, Gang
    Du, Xiaoxiao
    Zhang, Ran
    Yang, Jiaming
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [35] Smooth multi-patch scaled boundary isogeometric analysis for Kirchhoff-Love shells
    Reichle, Mathias
    Arf, Jeremias
    Simeon, Bernd
    Klinkel, Sven
    MECCANICA, 2023, 58 (8) : 1693 - 1716
  • [36] A hierarchical approach to the a posteriori error estimation of isogeometric Kirchhoff plates and Kirchhoff-Love shells
    Antolin, Pablo
    Buffa, Annalisa
    Coradello, Luca
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 363
  • [37] Isogeometric analysis and domain decomposition methods
    Hesch, Christian
    Betsch, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 213 : 104 - 112
  • [38] Decomposition of plate displacements via Kirchhoff-Love displacements
    Griso, Georges
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 18234 - 18257
  • [39] Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff-Love shell theory
    Yang, Feifei
    Yu, Tiantang
    Liu, Zhaowei
    Bui, Tinh Quoc
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 223
  • [40] Kirchhoff-Love shell theory based on tangential differential calculus
    Schoellhammer, D.
    Fries, T. P.
    COMPUTATIONAL MECHANICS, 2019, 64 (01) : 113 - 131