A fully incremental simple triangular multilayer Kirchhoff-Love shell element

被引:0
|
作者
Gomes, Gustavo Canario [1 ]
Pimenta, Paulo de Mattos [1 ]
Sanchez, Matheus Lucci [1 ]
Ibrahimbegovic, Adnan [2 ]
机构
[1] Univ Sao Paulo, Polytech Sch, Sao Paulo, Brazil
[2] Univ Technol Compiegne, Alliance Sorbonne Univ, Lab Roberval Mecan, Compiegne, France
来源
关键词
Triangular Shell Element; Multilayer shell; Nonlinear Shell Formulation; Kirchhoff-Love shell; Large Strain; FINITE-ELEMENT; MODEL;
D O I
10.1590/1679-78258159
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a new triangular multi-layer nonlinear shell finite element with incremental degrees of freedom, suitable for large displacements and rotations. This is a nonconforming element with 6 nodes, quadratic displacement and linear rotation field based on Rodrigues incremental rotation parameters, with a total of 21 DoFs. The novelty of this element is the extension to a multilayer, fully incremental situation of the T6-3iKL element, a kinematical model with properties from Kirchhoff-Love theory, approximating the shell director across layers as constant. The model is numerically implemented, and results are compared to different references in multiple examples, showing the capabilities of the formulation. It is believed that the possibly simplest multilayer extension, combined with fully incremental DoFs, simple kinematic, no necessity of artificial parameters such as penalties, a relatively small number of DoFs, possibility to use various 3D material models, easily connected with multiple branched shells and beams, and geometric exact theory create a simple yet powerful shell element.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A finite element formulation for a geometrically exact Kirchhoff-Love beam based on constrained translation
    Schulz, Matthias
    Boel, Markus
    COMPUTATIONAL MECHANICS, 2019, 64 (04) : 1155 - 1175
  • [42] An interior penalty coupling strategy for isogeometric non-conformal Kirchhoff-Love shell patches
    Guarino, Giuliano
    Antolin, Pablo
    Milazzo, Alberto
    Buffa, Annalisa
    ENGINEERING WITH COMPUTERS, 2024, 40 (05) : 3031 - 3057
  • [43] A general-purpose, inelastic, rotation-free Kirchhoff-Love shell formulation for peridynamics
    Behzadinasab, Masoud
    Alaydin, Mert
    Trask, Nathaniel
    Bazilevs, Yuri
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
  • [44] Nonlinear Shell Models of Kirchhoff-Love Type: Existence Theorem and Comparison with Koiter’s Model
    Cristinel Mardare
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 3 - 27
  • [45] The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches
    Kiendl, J.
    Bazilevs, Y.
    Hsu, M. -C.
    Wuechner, R.
    Bletzinger, K. -U.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (37-40) : 2403 - 2416
  • [46] ANALYSIS OF VARIOUS DESCRIPTIONS OF STATE OF STRAIN IN THE LINEAR KIRCHHOFF-LOVE TYPE SHELL THEORY.
    LEWINSKI, T.
    1980, V 28 (N 4): : 635 - 651
  • [47] Nonlinear Shell Models of Kirchhoff-Love Type:Existence Theorem and Comparison with Koiter's Model
    Cristinel MARDARE
    Acta Mathematicae Applicatae Sinica, 2019, (01) : 3 - 27
  • [48] Exact two-dimensional formulation of the 3D Kirchhoff-Love shell model
    Anicic, S
    Léger, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (08): : 741 - 746
  • [49] SIMPLE TRIANGULAR CURVED SHELL ELEMENT.
    Stolarski, H.
    Belytschko, T.
    Carpenter, N.
    Kennedy, J.M.
    Engineering computations, 1984, 1 (03) : 210 - 218
  • [50] SIMPLE FLAT TRIANGULAR SHELL ELEMENT REVISITED
    OLSON, MD
    BEARDEN, TW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1979, 14 (01) : 51 - 68