An interior penalty coupling strategy for isogeometric non-conformal Kirchhoff-Love shell patches

被引:2
|
作者
Guarino, Giuliano [1 ,2 ]
Antolin, Pablo [2 ]
Milazzo, Alberto [1 ]
Buffa, Annalisa [2 ]
机构
[1] Univ Palermo, Dept Engn, I-90128 Palermo, Italy
[2] Ecole Polytech Fed Lausanne, Math Inst, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
Isogeometric Analysis; Trimming; Weak coupling; Interior penalty; Kirchhoff-Love shells; Laminates; ROBUST NITSCHES FORMULATION; FINITE-ELEMENTS; THIN SHELLS; DESIGN; GEOMETRY; GEOPDES; PLATES;
D O I
10.1007/s00366-024-01965-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the C 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>1$$\end{document} requirement of Kirchhoff-Love-based discretizations. Weak enforcement of coupling conditions is achieved through the symmetric interior penalty method, where the fluxes are computed using their correct variationally consistent expression that was only recently proposed and is unprecedentedly adopted herein in the context of coupling conditions. The constitutive relationship accounts for generically laminated materials, although the proposed tests are conducted under the assumption of uniform thickness and lamination sequence. Numerical experiments assess the method for an isotropic and a laminated plate, as well as an isotropic hyperbolic paraboloid shell from the new shell obstacle course. The boundary conditions and domain force are chosen to reproduce manufactured analytical solutions, which are taken as reference to compute rigorous convergence curves in the L 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} , H 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document} , and H 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2$$\end{document} norms, that closely approach optimal ones predicted by theory. Additionally, we conduct a final test on a complex structure comprising five intersecting laminated cylindrical shells, whose geometry is directly imported from a STEP file. The results exhibit excellent agreement with those obtained through commercial software, showcasing the method's potential for real-world industrial applications.
引用
收藏
页码:3031 / 3057
页数:27
相关论文
共 34 条
  • [1] Penalty coupling of trimmed isogeometric Kirchhoff-Love shell patches
    Proserpio, Davide
    Kiendl, Josef
    [J]. JOURNAL OF MECHANICS, 2022, 38 : 156 - 165
  • [2] A robust penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches in large deformations
    Leonetti, Leonardo
    Liguori, Francesco S.
    Magisano, Domenico
    Kiendl, Josef
    Reali, Alessandro
    Garcea, Giovanni
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 371
  • [3] Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades
    Herrema, Austin J.
    Johnson, Emily L.
    Proserpio, Davide
    Wu, Michael C. H.
    Kiendl, Josef
    Hsu, Ming-Chen
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 810 - 840
  • [4] Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades (vol 346, pg 810, 2019)
    Herrema, Austin J.
    Johnson, Emily L.
    Proserpio, Davide
    Wu, Michael C. H.
    Kiendl, Josef
    Hsu, Ming-Chen
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
  • [5] Isogeometric shell analysis with Kirchhoff-Love elements
    Kiendl, J.
    Bletzinger, K-U.
    Linhard, J.
    Wuechner, R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (49-52) : 3902 - 3914
  • [6] A flexible approach for coupling NURBS patches in rotationless isogeometric analysis of Kirchhoff-Love shells
    Coox, Laurens
    Maurin, Florian
    Greco, Francesco
    Deckers, Elke
    Vandepitte, Dirk
    Desmet, Wim
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 : 505 - 531
  • [7] Domain Decomposition Methods and Kirchhoff-Love Shell Multipatch Coupling in Isogeometric Analysis
    Apostolatos, Andreas
    Breitenberger, Michael
    Wuechner, Roland
    Bletzinger, Kai-Uwe
    [J]. ISOGEOMETRIC ANALYSIS AND APPLICATIONS 2014, 2015, 107 : 73 - 101
  • [8] Modal Synthesis with the Isogeometric Kirchhoff-Love Shell Elements
    Lei, Zhen
    Gillot, Frederic
    Jezequel, Louis
    [J]. INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (02)
  • [9] Isogeometric Kirchhoff-Love shell formulations for biological membranes
    Tepole, Adrian Buganza
    Kabaria, Hardik
    Bletzinger, Kai-Uwe
    Kuhl, Ellen
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 293 : 328 - 347
  • [10] The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches
    Kiendl, J.
    Bazilevs, Y.
    Hsu, M. -C.
    Wuechner, R.
    Bletzinger, K. -U.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (37-40) : 2403 - 2416