A fully incremental simple triangular multilayer Kirchhoff-Love shell element

被引:0
|
作者
Gomes, Gustavo Canario [1 ]
Pimenta, Paulo de Mattos [1 ]
Sanchez, Matheus Lucci [1 ]
Ibrahimbegovic, Adnan [2 ]
机构
[1] Univ Sao Paulo, Polytech Sch, Sao Paulo, Brazil
[2] Univ Technol Compiegne, Alliance Sorbonne Univ, Lab Roberval Mecan, Compiegne, France
来源
关键词
Triangular Shell Element; Multilayer shell; Nonlinear Shell Formulation; Kirchhoff-Love shell; Large Strain; FINITE-ELEMENT; MODEL;
D O I
10.1590/1679-78258159
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a new triangular multi-layer nonlinear shell finite element with incremental degrees of freedom, suitable for large displacements and rotations. This is a nonconforming element with 6 nodes, quadratic displacement and linear rotation field based on Rodrigues incremental rotation parameters, with a total of 21 DoFs. The novelty of this element is the extension to a multilayer, fully incremental situation of the T6-3iKL element, a kinematical model with properties from Kirchhoff-Love theory, approximating the shell director across layers as constant. The model is numerically implemented, and results are compared to different references in multiple examples, showing the capabilities of the formulation. It is believed that the possibly simplest multilayer extension, combined with fully incremental DoFs, simple kinematic, no necessity of artificial parameters such as penalties, a relatively small number of DoFs, possibility to use various 3D material models, easily connected with multiple branched shells and beams, and geometric exact theory create a simple yet powerful shell element.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A simple fully nonlinear Kirchhoff-Love shell finite element
    Sanchez, Matheus L.
    Costa e Silva, Catia
    Pimenta, Paulo M.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2020, 17 (08) : 1 - 16
  • [2] Kirchhoff-Love shell formulation based on triangular isogeometric analysis
    Zareh, Mehrdad
    Qian, Xiaoping
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 853 - 873
  • [3] On triangular virtual elements for Kirchhoff-Love shells
    Wu, T. P.
    Pimenta, P. M.
    Wriggers, P.
    ARCHIVE OF APPLIED MECHANICS, 2024, 94 (09) : 2371 - 2404
  • [4] Isogeometric shell analysis with Kirchhoff-Love elements
    Kiendl, J.
    Bletzinger, K-U.
    Linhard, J.
    Wuechner, R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (49-52) : 3902 - 3914
  • [5] Modal Synthesis with the Isogeometric Kirchhoff-Love Shell Elements
    Lei, Zhen
    Gillot, Frederic
    Jezequel, Louis
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (02)
  • [6] Isogeometric Kirchhoff-Love shell formulations for biological membranes
    Tepole, Adrian Buganza
    Kabaria, Hardik
    Bletzinger, Kai-Uwe
    Kuhl, Ellen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 293 : 328 - 347
  • [7] Finite-strain quadrilateral shell element based on discrete Kirchhoff-Love constraints
    Areias, PMA
    Song, JH
    Belytschko, T
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (09) : 1166 - 1206
  • [8] Virtual element for the buckling problem of Kirchhoff-Love plates
    Mora, David
    Velasquez, Ivan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 360
  • [9] Kirchhoff-Love shell theory based on tangential differential calculus
    Schoellhammer, D.
    Fries, T. P.
    COMPUTATIONAL MECHANICS, 2019, 64 (01) : 113 - 131
  • [10] Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials
    Kiendl, Josef
    Hsu, Ming-Chen
    Wu, Michael C. H.
    Reali, Alessandro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 291 : 280 - 303