Virtual element for the buckling problem of Kirchhoff-Love plates

被引:31
|
作者
Mora, David [1 ,2 ]
Velasquez, Ivan [2 ,3 ]
机构
[1] Univ Bio Bio, GIMNAP, Dept Matemat, Concepcion, Chile
[2] Univ Concepcion, CIMA 2, Concepcion, Chile
[3] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
关键词
Virtual element method; Buckling eigenvalue problem; Kirchhoff-Love plates; Error estimates; APPROXIMATION; FORMULATION;
D O I
10.1016/j.cma.2019.112687
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we develop a virtual element method (VEM) of high order to solve the fourth order plate buckling eigenvalue problem on polygonal meshes. We write a variational formulation based on the Kirchhoff-Love model depending on the transverse displacement of the plate. We propose a C-1 conforming virtual element discretization of arbitrary order k >= 2 and we use the so-called BabuSka-Osborn abstract spectral approximation theory to show that the resulting scheme provides a correct approximation of the spectrum and prove optimal order error estimates for the buckling modes (eigenfunctions) and a double order for the buckling coefficients (eigenvalues). Finally, we report some numerical experiments illustrating the behavior of the proposed scheme and confirming our theoretical results on different families of meshes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The virtual element method for an obstacle problem of a Kirchhoff-Love plate
    Feng, Fang
    Han, Weimin
    Huang, Jianguo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103
  • [2] Signorini's problem in the Kirchhoff-Love theory of plates
    Paumier, JC
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 335 (06) : 567 - 570
  • [3] An inverse problem for estimation of bending stiffness in Kirchhoff-Love plates
    Marinov, Tchavdar T.
    Marinova, Rossitza S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (03) : 512 - 519
  • [4] Quasistatic delamination models for Kirchhoff-Love plates
    Freddi, Lorenzo
    Paroni, Roberto
    Roubicek, Tomas
    Zanini, Chiara
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (11): : 845 - 865
  • [5] eXtended finite element methods for thin cracked plates with Kirchhoff-Love theory
    Lasry, Jeremie
    Pommier, Julien
    Renard, Yves
    Salauen, Michel
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (09) : 1115 - 1138
  • [6] Isogeometric collocation for Kirchhoff-Love plates and shells
    Maurin, Florian
    Greco, Francesco
    Coox, Laurens
    Vandepitte, Dirk
    Desmet, Wim
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 329 : 396 - 420
  • [7] On triangular virtual elements for Kirchhoff-Love shells
    Wu, T. P.
    Pimenta, P. M.
    Wriggers, P.
    [J]. ARCHIVE OF APPLIED MECHANICS, 2024, 94 (09) : 2371 - 2404
  • [8] A FULLY DISCRETE PLATES COMPLEX ON POLYGONAL MESHES WITH APPLICATION TO THE KIRCHHOFF-LOVE PROBLEM
    Di Pietro, Daniele A.
    Droniou, Jerome
    [J]. MATHEMATICS OF COMPUTATION, 2023, 92 (339) : 51 - 77
  • [9] A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff-Love buckling problem
    Hansbo, Peter
    Larson, Mats G.
    [J]. COMPUTATIONAL MECHANICS, 2015, 56 (05) : 815 - 827
  • [10] On the Crossing Bridge between Two Kirchhoff-Love Plates
    Khludnev, Alexander
    [J]. AXIOMS, 2023, 12 (02)