Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials

被引:243
|
作者
Kiendl, Josef [1 ]
Hsu, Ming-Chen [2 ]
Wu, Michael C. H. [2 ]
Reali, Alessandro [1 ,3 ,4 ]
机构
[1] Univ Pavia, Dipartimento Ingn Civile Architettura, I-27100 Pavia, Italy
[2] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[3] CNR, Ist Matemat Appl & Tecnol Informat, I-27100 Pavia, Italy
[4] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
基金
欧洲研究理事会;
关键词
Isogeometric; Kirchhoff-Love; Thin shell; Hyperelastic; Finite strain; Incompressibility; THIN SHELLS; ELEMENT; DEFORMATION; NURBS; SIMULATION; REFINEMENT; STRAINS; LOCKING; CAD;
D O I
10.1016/j.cma.2015.03.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present formulations for compressible and incompressible hyperelastic thin shells which can use general 3D constitutive models. The necessary plane stress condition is enforced analytically for incompressible materials and iteratively for compressible materials. The thickness stretch is statically condensed and the shell kinematics are completely described by the first and second fundamental forms of the midsurface. We use C-1-continuous isogeometric discretizations to build the numerical models. Numerical tests, including structural dynamics simulations of a bioprosthetic heart valve, show the good performance and applicability of the presented methods. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:280 / 303
页数:24
相关论文
共 50 条
  • [1] Isogeometric Kirchhoff-Love shell formulations for biological membranes
    Tepole, Adrian Buganza
    Kabaria, Hardik
    Bletzinger, Kai-Uwe
    Kuhl, Ellen
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 293 : 328 - 347
  • [2] Large deformation frictional contact formulations for isogeometric Kirchhoff-Love shell
    Zhang, Ran
    Zhao, Gang
    Wang, Wei
    Du, Xiaoxiao
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 249
  • [3] Isogeometric shell analysis with Kirchhoff-Love elements
    Kiendl, J.
    Bletzinger, K-U.
    Linhard, J.
    Wuechner, R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (49-52) : 3902 - 3914
  • [4] Stretch-Based Hyperelastic Material Formulations for Isogeometric Kirchhoff-Love Shells with Application to Wrinkling
    Verhelst, H. M.
    Moller, M.
    Den Besten, J. H.
    Mantzaflaris, A.
    Kaminski, M. L.
    [J]. COMPUTER-AIDED DESIGN, 2021, 139
  • [5] Kirchhoff-Love Shells with Arbitrary Hyperelastic Materials
    Wen, Jiahao
    Barbic, Jernej
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [6] Modal Synthesis with the Isogeometric Kirchhoff-Love Shell Elements
    Lei, Zhen
    Gillot, Frederic
    Jezequel, Louis
    [J]. INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (02)
  • [7] Isogeometric Kirchhoff-Love shell formulation for elasto-plasticity
    Ambati, Marreddy
    Kiendl, Josef
    De Lorenzis, Laura
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 : 320 - 339
  • [8] Penalty coupling of trimmed isogeometric Kirchhoff-Love shell patches
    Proserpio, Davide
    Kiendl, Josef
    [J]. JOURNAL OF MECHANICS, 2022, 38 : 156 - 165
  • [9] Isogeometric Bezier dual mortaring: The Kirchhoff-Love shell problem
    Miao, Di
    Zou, Zhihui
    Scott, Michael A.
    Borden, Michael J.
    Thomas, Derek C.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 382
  • [10] Kirchhoff-Love shell formulation based on triangular isogeometric analysis
    Zareh, Mehrdad
    Qian, Xiaoping
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 853 - 873