A Survey on Android Malware Detection Techniques Using Supervised Machine Learning

被引:0
|
作者
Altaha, Safa J. [1 ]
Aljughaiman, Ahmed [1 ]
Gul, Sonia [1 ]
机构
[1] King Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Networks & Commun, Al Hasa 31982, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Malware; Smart phones; Operating systems; Trojan horses; Security; Libraries; Codes; Ransomware; User interfaces; Surveys; Android; Android malware; malware detection; supervised machine learning; FEATURES;
D O I
10.1109/ACCESS.2024.3485706
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Android's open-source nature has contributed to the platform's rapid growth and its widespread adoption. However, this widespread adoption of the Android operating system (OS) has also attracted the attention of malicious actors who develop malware targeting these devices. Android malware threatens users' privacy, data security, and overall device performance. Machine learning (ML) plays a significant role in malware analysis and detection because it can process huge amounts of data, identify complex patterns, and adjust to changing threats. The purpose of this paper is to provide a comprehensive review of the existing research on ML-based techniques used to detect and analyze Android malware. In this paper, the security weaknesses in Android OS are explored and the reasons why these weaknesses do not exist in the iPhone operating system (iOS) are discussed. Further, the authors examine the existing studies that have been proposed by researchers and outlines their strengths and limitations. The findings reveal that the existing researches utilize different ML models, features, and detection techniques, including static, dynamic, and hybrid approaches. Moreover, directions for future research and potential areas that require more attention and improvement in this field are highlighted.
引用
收藏
页码:173168 / 173191
页数:24
相关论文
共 50 条
  • [41] Efficient and Effective Static Android Malware Detection Using Machine Learning
    Bansal, Vidhi
    Ghosh, Mohona
    Baliyan, Niyati
    INFORMATION SYSTEMS SECURITY, ICISS 2022, 2022, 13784 : 103 - 118
  • [42] Permissions-Based Detection of Android Malware Using Machine Learning
    Akbar, Fahad
    Hussain, Mehdi
    Mumtaz, Rafia
    Riaz, Qaiser
    Wahab, Ainuddin Wahid Abdul
    Jung, Ki-Hyun
    SYMMETRY-BASEL, 2022, 14 (04):
  • [43] Malware Detection on Android Smartphones using API Class and Machine Learning
    Westyarian
    Rosmansyah, Yusep
    Dabarsyah, Budiman
    5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS 2015, 2015, : 294 - 297
  • [44] Machine Learning for Android Malware Detection Using Permission and API Calls
    Peiravian, Naser
    Zhu, Xingquan
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 300 - 305
  • [45] Permissions-based Android malware detection using machine learning
    Alomar, Atheer
    AlJarullah, Asma
    Abu-Ghazalah, Sarah
    Neural Computing and Applications, 2025, 37 (06) : 5255 - 5270
  • [46] Android Mobile Malware Detection Using Machine Learning: A Systematic Review
    Senanayake, Janaka
    Kalutarage, Harsha
    Al-Kadri, Mhd Omar
    ELECTRONICS, 2021, 10 (13)
  • [47] Analysis of Android Malware Detection Performance using Machine Learning Classifiers
    Ham, Hyo-Sik
    Choi, Mi-Jung
    2013 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2013): FUTURE CREATIVE CONVERGENCE TECHNOLOGIES FOR NEW ICT ECOSYSTEMS, 2013, : 492 - 497
  • [48] Hybrid Android Malware Detection by Combining Supervised and Unsupervised Learning
    Arora, Anshul
    Peddoju, Sateesh K.
    Chouhan, Vikas
    Chaudhary, Ajay
    MOBICOM'18: PROCEEDINGS OF THE 24TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, 2018, : 798 - 800
  • [49] Application of Machine Learning Algorithms for Android Malware Detection
    Kakavand, Mohsen
    Dabbagh, Mohammad
    Dehghantanha, Ali
    2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 32 - 36
  • [50] Explainable Machine Learning for Malware Detection on Android Applications
    Palma, Catarina
    Ferreira, Artur
    Figueiredo, Mario
    INFORMATION, 2024, 15 (01)