Analysis of Android Malware Detection Performance using Machine Learning Classifiers

被引:0
|
作者
Ham, Hyo-Sik [2 ]
Choi, Mi-Jung [1 ]
机构
[1] KNU, Dept Comp Sci, Chunchon, South Korea
[2] Kangwon Natl Univ, Dept Comp Sci, Chunchon, South Korea
基金
新加坡国家研究基金会;
关键词
Malware Detection; Android; Machine Learning Classifiers; Detection Performance;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As mobile devices have supported various services and contents, much personal information such as private SMS messages, bank account information, etc. is scattered in mobile devices. Thus, attackers extend the attack range not only to the existing environment of PC and Internet, but also to the mobile device. Previous studies evaluated the malware detection performance of machine learning classifiers through collecting and analyzing event, system call, and log information generated in Android mobile devices. However, monitoring of unnecessary features without understanding Android architecture and malware characteristics generates resource consumption overhead of Android devices and low ratio of malware detection. In this paper, we propose new feature sets which solve the problem of previous studies in mobile malware detection and analyze the malware detection performance of machine learning classifiers.
引用
收藏
页码:492 / 497
页数:6
相关论文
共 50 条
  • [1] Android Malware Detection Using Parallel Machine Learning Classifiers
    Yerima, Suleiman Y.
    Sezer, Sakir
    Muttik, Igor
    [J]. 2014 EIGHTH INTERNATIONAL CONFERENCE ON NEXT GENERATION MOBILE APPS, SERVICES AND TECHNOLOGIES (NGMAST), 2014, : 37 - 42
  • [2] Machine Learning Classifiers for Android Malware Analysis
    Urcuqui Lopez, Christian Camilo
    Navarro Cadavid, Andres
    [J]. 2016 IEEE COLOMBIAN CONFERENCE ON COMMUNICATIONS AND COMPUTING (COLCOM), 2016,
  • [3] Android Malware Detection Using Category-Based Machine Learning Classifiers
    Alatwi, Huda Ali
    Oh, Tae
    Fokoue, Ernest
    Stackpole, Bill
    [J]. SIGITE'16: PROCEEDINGS OF THE 17TH ANNUAL CONFERENCE ON INFORMATION TECHNOLOGY EDUCATION, 2016, : 54 - 59
  • [4] An Investigation on Fragility of Machine Learning Classifiers in Android Malware Detection
    Rafiq, Husnain
    Aslam, Nauman
    Issac, Biju
    Randhawa, Rizwan Hamid
    [J]. IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [5] Evaluation of Tree Based Machine Learning Classifiers for Android Malware Detection
    Rana, Md. Shohel
    Rahman, Sheikh Shah Mohammad Motiur
    Sung, Andrew H.
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2018, PT II, 2018, 11056 : 377 - 385
  • [6] Applying machine learning classifiers to dynamic Android malware detection at scale
    Amos, Brandon
    Turner, Hamilton
    White, Jules
    [J]. 2013 9TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2013, : 1666 - 1671
  • [7] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    [J]. 2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [8] An Ensemble Approach Based on Fuzzy Logic Using Machine Learning Classifiers for Android Malware Detection
    Atacak, Ismail
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [9] Android Malware Detection Using Hybrid Analysis and Machine Learning Technique
    Yang, Fan
    Zhuang, Yi
    Wang, Jun
    [J]. CLOUD COMPUTING AND SECURITY, PT II, 2017, 10603 : 565 - 575
  • [10] Android Malware Detection Using Machine Learning: A Review
    Chowdhury, Naseef-Ur-Rahman
    Haque, Ahshanul
    Soliman, Hamdy
    Hossen, Mohammad Sahinur
    Fatima, Tanjim
    Ahmed, Imtiaz
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 507 - 522