Android Malware Detection Using Machine Learning: A Review

被引:0
|
作者
Chowdhury, Naseef-Ur-Rahman [1 ]
Haque, Ahshanul [1 ]
Soliman, Hamdy [1 ]
Hossen, Mohammad Sahinur [1 ]
Fatima, Tanjim [1 ]
Ahmed, Imtiaz [1 ]
机构
[1] New Mexico Inst Min & Technol, 801 Leroy PL, Socorro, NM 87801 USA
关键词
Android malware; Mobile security; Machine learning; Detection; Supervised learning; Unsupervised learning; Deep learning;
D O I
10.1007/978-3-031-47715-7_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Malware for Android is becoming increasingly dangerous to the safety of mobile devices and the data they hold. Although machine learning (ML) techniques have been shown to be effective at detecting malware for Android, a comprehensive analysis of the methods used is required. We review the current state of Android malware detection using machine learning in this paper. We begin by providing an overview of Android malware and the security issues it causes. Then, we look at the various supervised, unsupervised, and deep learning, machine learning approaches that have been utilized for Android malware detection. Additionally, we present a comparison of the performance of various Android malware detection methods and talk about the performance evaluation metrics that are utilized to evaluate their efficacy. Finally, we draw attention to the drawbacks and difficulties of the methods that are currently in use and suggest possible future directions for research in this area. In addition to providing insights into the current state of Android malware detection using machine learning, our review provides a comprehensive overview of the subject.
引用
收藏
页码:507 / 522
页数:16
相关论文
共 50 条
  • [1] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    [J]. 2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [2] Android Mobile Malware Detection Using Machine Learning: A Systematic Review
    Senanayake, Janaka
    Kalutarage, Harsha
    Al-Kadri, Mhd Omar
    [J]. ELECTRONICS, 2021, 10 (13)
  • [3] Android Malware Detection through Machine Learning Techniques: A Review
    Abikoye, Oluwakemi Christiana
    Gyunka, Benjamin Aruwa
    Akande, Oluwatobi Noah
    [J]. INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (02) : 14 - 30
  • [4] A Review of Android Malware Detection Approaches Based on Machine Learning
    Liu, Kaijun
    Xu, Shengwei
    Xu, Guoai
    Zhang, Miao
    Sun, Dawei
    Liu, Haifeng
    [J]. IEEE ACCESS, 2020, 8 (08): : 124579 - 124607
  • [5] Androhealthcheck: A malware detection system for android using machine learning
    Agrawal, Prerna
    Trivedi, Bhushan
    [J]. Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 35 - 41
  • [6] AndyWar: an intelligent android malware detection using machine learning
    Roy, Sandipan
    Bhanja, Samit
    Das, Abhishek
    [J]. INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2023,
  • [7] Android Malware Detection Using Parallel Machine Learning Classifiers
    Yerima, Suleiman Y.
    Sezer, Sakir
    Muttik, Igor
    [J]. 2014 EIGHTH INTERNATIONAL CONFERENCE ON NEXT GENERATION MOBILE APPS, SERVICES AND TECHNOLOGIES (NGMAST), 2014, : 37 - 42
  • [8] Android Malware Detection Using Machine Learning on Image Patterns
    Darus, Falai Mohd
    Salleh, Noor Azurati Alimad
    Ariffin, Aswami Fadillah Mohd
    [J]. PROCEEDINGS OF THE 2018 CYBER RESILIENCE CONFERENCE (CRC), 2018,
  • [9] AndyWar: an intelligent android malware detection using machine learning
    Roy, Sandipan
    Bhanja, Samit
    Das, Abhishek
    [J]. Innovations in Systems and Software Engineering, 2023,
  • [10] An Android Malware Detection Leveraging Machine Learning
    Shatnawi, Ahmed S.
    Jaradat, Aya
    Yaseen, Tuqa Bani
    Taqieddin, Eyad
    Al-Ayyoub, Mahmoud
    Mustafa, Dheya
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022