Android Malware Detection Using Machine Learning

被引:1
|
作者
Droos, Ayat [1 ]
Al-Mahadeen, Awss [1 ]
Al-Harasis, Tasnim [1 ]
Al-Attar, Rama [1 ]
Ababneh, Mohammad [1 ]
机构
[1] Princess Sumaya Univ Technol, Comp Sci Dept, Amman, Jordan
关键词
Malware; SMOTE; Machine Learning; Random Forest; Android; APK; CICMalDroid2020;
D O I
10.1109/ICICS55353.2022.9811130
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Now a days, malware has become a more and more concerning matter in the security of information and technology proven by the huge increase in the number of attacks seen over the past few years on all kinds of computers, the internet and mobile devices. Detection of zero-day malware has become a main motivation for security researchers. Since one of the most widely used mobile operating systems is Google's Android, attackers have shifted their focus on developing malware that specifically targets Android. Many security researchers used multiple Machine Learning algorithms to detect these new Android and other malwares. In this paper, we propose a new system using machine learning classifiers to detect Android malware, following a mechanism to classify each APK application as a malicious or a legitimate application. The system employs a feature set of 27 features from a newly released dataset (CICMalDroid2020) containing 18,998 instances of APKs to achieve the best detection accuracy. Our results show that the methodology using Random Forest has achieved the best accuracy of 98.6% compared to other ML classifiers.
引用
收藏
页码:36 / 41
页数:6
相关论文
共 50 条
  • [1] Android Malware Detection Using Machine Learning: A Review
    Chowdhury, Naseef-Ur-Rahman
    Haque, Ahshanul
    Soliman, Hamdy
    Hossen, Mohammad Sahinur
    Fatima, Tanjim
    Ahmed, Imtiaz
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 507 - 522
  • [2] Androhealthcheck: A malware detection system for android using machine learning
    Agrawal, Prerna
    Trivedi, Bhushan
    [J]. Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 35 - 41
  • [3] AndyWar: an intelligent android malware detection using machine learning
    Roy, Sandipan
    Bhanja, Samit
    Das, Abhishek
    [J]. INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2023,
  • [4] Android Malware Detection Using Machine Learning on Image Patterns
    Darus, Falai Mohd
    Salleh, Noor Azurati Alimad
    Ariffin, Aswami Fadillah Mohd
    [J]. PROCEEDINGS OF THE 2018 CYBER RESILIENCE CONFERENCE (CRC), 2018,
  • [5] Android Malware Detection Using Parallel Machine Learning Classifiers
    Yerima, Suleiman Y.
    Sezer, Sakir
    Muttik, Igor
    [J]. 2014 EIGHTH INTERNATIONAL CONFERENCE ON NEXT GENERATION MOBILE APPS, SERVICES AND TECHNOLOGIES (NGMAST), 2014, : 37 - 42
  • [6] AndyWar: an intelligent android malware detection using machine learning
    Roy, Sandipan
    Bhanja, Samit
    Das, Abhishek
    [J]. Innovations in Systems and Software Engineering, 2023,
  • [7] An Android Malware Detection Leveraging Machine Learning
    Shatnawi, Ahmed S.
    Jaradat, Aya
    Yaseen, Tuqa Bani
    Taqieddin, Eyad
    Al-Ayyoub, Mahmoud
    Mustafa, Dheya
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [8] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    [J]. 2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [9] Android Malware Detection Using Hybrid Analysis and Machine Learning Technique
    Yang, Fan
    Zhuang, Yi
    Wang, Jun
    [J]. CLOUD COMPUTING AND SECURITY, PT II, 2017, 10603 : 565 - 575
  • [10] Malware Detection in Android Mobile Platform using Machine Learning Algorithms
    Al Ali, Mariam
    Svetinovic, Davor
    Aung, Zeyar
    Lukman, Suryani
    [J]. 2017 INTERNATIONAL CONFERENCE ON INFOCOM TECHNOLOGIES AND UNMANNED SYSTEMS (TRENDS AND FUTURE DIRECTIONS) (ICTUS), 2017, : 763 - 768