Malware Detection in Android Mobile Platform using Machine Learning Algorithms

被引:0
|
作者
Al Ali, Mariam [1 ]
Svetinovic, Davor [1 ]
Aung, Zeyar [1 ]
Lukman, Suryani [1 ]
机构
[1] Khalifa Univ Sci & Technol, Abu Dhabi, U Arab Emirates
关键词
malware detection; Android; apps; classification; machine learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malware has always been a problem in regards to any technological advances in the software world. Thus, it is to be expected that smart phones and other mobile devices are facing the same issues. In this paper, a practical and effective anomaly based malware detection framework is proposed with an emphasis on Android mobile computing platform. A dataset consisting of both benign and malicious applications (apps) were installed on an Android device to analyze the behavioral patterns. We first generate the system metrics (feature vector) from each app by executing it in a controlled environment. Then, a variety of machine learning algorithms: Decision Tree, K Nearest Neighbor, Logistic Regression, Multilayer Perceptron Neural Network, Naive Bayes, Random Forest, and Support Vector Machine are used to classify the app as benign or malware. Each algorithm is assessed using various performance criteria to identify which ones are more suitable to detect malicious software. The results suggest that Random Forest and Support Vector Machine provide the best outcomes thus making them the most effective techniques for malware detection.
引用
收藏
页码:763 / 768
页数:6
相关论文
共 50 条
  • [1] A Model for Android Platform Malware Detection Utilizing Multiple Machine Learning Algorithms
    Al Bazar, Hussein
    Abdel-Jaber, Hussein
    Naser, Muawya
    Hamid, Arwa Zakaria
    [J]. Informatica (Slovenia), 2024, 48 (17): : 95 - 108
  • [2] Application of Machine Learning Algorithms for Android Malware Detection
    Kakavand, Mohsen
    Dabbagh, Mohammad
    Dehghantanha, Ali
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 32 - 36
  • [3] A Survey on Android Malware Detection Techniques Using Machine Learning Algorithms
    Alqahtani, Ebtesam J.
    Zagrouba, Rachid
    Almuhaideb, Abdullah
    [J]. 2019 SIXTH INTERNATIONAL CONFERENCE ON SOFTWARE DEFINED SYSTEMS (SDS), 2019, : 110 - 117
  • [4] Android Mobile Malware Detection Using Machine Learning: A Systematic Review
    Senanayake, Janaka
    Kalutarage, Harsha
    Al-Kadri, Mhd Omar
    [J]. ELECTRONICS, 2021, 10 (13)
  • [5] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    [J]. 2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [6] Use of Machine Learning Algorithms for Android App Malware Detection
    Rawat, Shaurya
    Phira, Rushang
    Natu, Prachi
    [J]. 2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 448 - 454
  • [7] Analysis and Classification of Android Malware using Machine Learning Algorithms
    Tarar, Neha
    Sharma, Shweta
    Krishna, C. Rama
    [J]. PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), 2018, : 738 - 743
  • [8] Android Malware Detection Using Machine Learning: A Review
    Chowdhury, Naseef-Ur-Rahman
    Haque, Ahshanul
    Soliman, Hamdy
    Hossen, Mohammad Sahinur
    Fatima, Tanjim
    Ahmed, Imtiaz
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 507 - 522
  • [9] Android mobile security by detecting and classification of malware based on permissions using machine learning algorithms
    Varma, Ravi Kiran P.
    Raj, Kotari Prudvi
    Raju, K. V. Subba
    [J]. 2017 INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC), 2017, : 294 - 299
  • [10] Preliminary Results of Applying Machine Learning Algorithms to Android Malware Detection
    Leeds, Matthew
    Atkison, Travis
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1070 - 1073