Android Mobile Malware Detection Using Machine Learning: A Systematic Review

被引:36
|
作者
Senanayake, Janaka [1 ]
Kalutarage, Harsha [1 ]
Al-Kadri, Mhd Omar [2 ]
机构
[1] Robert Gordon Univ, Sch Comp, Aberdeen AB10 7QB, Scotland
[2] Birmingham City Univ, Sch Comp & Digital Technol, Birmingham B4 7XG, W Midlands, England
关键词
Android security; malware detection; code vulnerability; machine learning; STATIC ANALYSIS; CODE; CLASSIFIER;
D O I
10.3390/electronics10131606
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing use of mobile devices, malware attacks are rising, especially on Android phones, which account for 72.2% of the total market share. Hackers try to attack smartphones with various methods such as credential theft, surveillance, and malicious advertising. Among numerous countermeasures, machine learning (ML)-based methods have proven to be an effective means of detecting these attacks, as they are able to derive a classifier from a set of training examples, thus eliminating the need for an explicit definition of the signatures when developing malware detectors. This paper provides a systematic review of ML-based Android malware detection techniques. It critically evaluates 106 carefully selected articles and highlights their strengths and weaknesses as well as potential improvements. Finally, the ML-based methods for detecting source code vulnerabilities are discussed, because it might be more difficult to add security after the app is deployed. Therefore, this paper aims to enable researchers to acquire in-depth knowledge in the field and to identify potential future research and development directions.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Android Malware Detection Using Machine Learning: A Review
    Chowdhury, Naseef-Ur-Rahman
    Haque, Ahshanul
    Soliman, Hamdy
    Hossen, Mohammad Sahinur
    Fatima, Tanjim
    Ahmed, Imtiaz
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 507 - 522
  • [2] Malware Detection in Android Mobile Platform using Machine Learning Algorithms
    Al Ali, Mariam
    Svetinovic, Davor
    Aung, Zeyar
    Lukman, Suryani
    2017 INTERNATIONAL CONFERENCE ON INFOCOM TECHNOLOGIES AND UNMANNED SYSTEMS (TRENDS AND FUTURE DIRECTIONS) (ICTUS), 2017, : 763 - 768
  • [3] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [4] Malware Detection Using Machine Learning Algorithms in Android
    Sri, Kovvuri Ramya
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 561 - 568
  • [5] Android Malware Detection Using Machine Learning Technique
    Sabri, Nor ‘Afifah
    Khamis, Shakiroh
    Zainudin, Zanariah
    Lecture Notes on Data Engineering and Communications Technologies, 2024, 211 : 153 - 164
  • [6] Android Malware Detection through Machine Learning Techniques: A Review
    Abikoye, Oluwakemi Christiana
    Gyunka, Benjamin Aruwa
    Akande, Oluwatobi Noah
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (02) : 14 - 30
  • [7] A Review of Android Malware Detection Approaches Based on Machine Learning
    Liu, Kaijun
    Xu, Shengwei
    Xu, Guoai
    Zhang, Miao
    Sun, Dawei
    Liu, Haifeng
    IEEE ACCESS, 2020, 8 (08): : 124579 - 124607
  • [8] Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
    Alzubaidi, Abdulaziz
    IEEE ACCESS, 2021, 9 : 146318 - 146349
  • [9] Androhealthcheck: A malware detection system for android using machine learning
    Agrawal P.
    Trivedi B.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 35 - 41
  • [10] AndyWar: an intelligent android malware detection using machine learning
    Roy, Sandipan
    Bhanja, Samit
    Das, Abhishek
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2025, 21 (01) : 303 - 311