Evaluation of Tree Based Machine Learning Classifiers for Android Malware Detection

被引:14
|
作者
Rana, Md. Shohel [1 ]
Rahman, Sheikh Shah Mohammad Motiur [2 ]
Sung, Andrew H. [1 ]
机构
[1] Univ Southern Mississippi, Hattiesburg, MS 39406 USA
[2] Daffodil Int Univ, Dhaka, Bangladesh
关键词
Machine learning; Classifier; DREBIN; Substring; Malware;
D O I
10.1007/978-3-319-98446-9_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Android is a most popular mobile-based operating system with billions of active users, which has encouraged hackers and cyber-criminals to push the malware into this operating system. Accordingly, extensive research has been conducted on malware analysis and detection for Android in recent years; and Android has developed and implemented numerous security controls to deal with the problems, including unique ID (UID) for each application, system permissions, and its distribution platform Google Play. In this paper, we evaluate four tree-based machine learning algorithms for detecting Android malware in conjunction with a substring-based feature selection method for the classifiers. In the experiments 11,120 apps of the DREBIN dataset were used where 5,560 contain malware samples and the rest are benign. It is found that the Random Forest classifier outperforms the best previously reported result (around 94% accuracy, obtained by SVM) with 97.24% accuracy, and thus provides a strong basis for building effective tools for Android malware detection.
引用
收藏
页码:377 / 385
页数:9
相关论文
共 50 条
  • [1] An Investigation on Fragility of Machine Learning Classifiers in Android Malware Detection
    Rafiq, Husnain
    Aslam, Nauman
    Issac, Biju
    Randhawa, Rizwan Hamid
    [J]. IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [2] Android Malware Detection Using Parallel Machine Learning Classifiers
    Yerima, Suleiman Y.
    Sezer, Sakir
    Muttik, Igor
    [J]. 2014 EIGHTH INTERNATIONAL CONFERENCE ON NEXT GENERATION MOBILE APPS, SERVICES AND TECHNOLOGIES (NGMAST), 2014, : 37 - 42
  • [3] Android Malware Detection Using Category-Based Machine Learning Classifiers
    Alatwi, Huda Ali
    Oh, Tae
    Fokoue, Ernest
    Stackpole, Bill
    [J]. SIGITE'16: PROCEEDINGS OF THE 17TH ANNUAL CONFERENCE ON INFORMATION TECHNOLOGY EDUCATION, 2016, : 54 - 59
  • [4] Machine Learning Classifiers for Android Malware Analysis
    Urcuqui Lopez, Christian Camilo
    Navarro Cadavid, Andres
    [J]. 2016 IEEE COLOMBIAN CONFERENCE ON COMMUNICATIONS AND COMPUTING (COLCOM), 2016,
  • [5] Analysis of Android Malware Detection Performance using Machine Learning Classifiers
    Ham, Hyo-Sik
    Choi, Mi-Jung
    [J]. 2013 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2013): FUTURE CREATIVE CONVERGENCE TECHNOLOGIES FOR NEW ICT ECOSYSTEMS, 2013, : 492 - 497
  • [6] Applying machine learning classifiers to dynamic Android malware detection at scale
    Amos, Brandon
    Turner, Hamilton
    White, Jules
    [J]. 2013 9TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2013, : 1666 - 1671
  • [7] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    [J]. 2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [8] Evaluation of machine learning classifiers for mobile malware detection
    Fairuz Amalina Narudin
    Ali Feizollah
    Nor Badrul Anuar
    Abdullah Gani
    [J]. Soft Computing, 2016, 20 : 343 - 357
  • [9] Evaluation of machine learning classifiers for mobile malware detection
    Narudin, Fairuz Amalina
    Feizollah, Ali
    Anuar, Nor Badrul
    Gani, Abdullah
    [J]. SOFT COMPUTING, 2016, 20 (01) : 343 - 357
  • [10] On the Evaluation of the Machine Learning Based Hybrid Approach for Android Malware Detection
    Ratyal, Natasha Javed
    Khadam, Maryam
    Aleem, Muhammad
    [J]. 2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 100 - 107