Malware Detection on Android Smartphones using API Class and Machine Learning

被引:0
|
作者
Westyarian [1 ]
Rosmansyah, Yusep [1 ]
Dabarsyah, Budiman [1 ]
机构
[1] Inst Teknol Bandung, Sch Elect Engn & Informat, Dept Elect Engn, Jl Ganeca 10, Bandung 40132, Indonesia
关键词
Android; Malware detection; APIs class; Machine Learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a (new) method to detect malware in Android smartphones using API (application programming interface) classes. We use machine learning to classify whether an application is benign or malware. Furthermore, we compare classification precision rate from machine learning. This research uses 51 APIs package classes from 16 APIs classes and employs cross validation and percentage split test to classify benign and malware using Random Forest, J48, and Support Vector Machine algorithms. We use 412 total application samples (205 benign, 207 malware). We obtain that the classification precision average is 91.9%.
引用
收藏
页码:294 / 297
页数:4
相关论文
共 50 条
  • [1] Machine Learning for Android Malware Detection Using Permission and API Calls
    Peiravian, Naser
    Zhu, Xingquan
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 300 - 305
  • [2] Android Malware Detection based on Useful API Calls and Machine Learning
    Jung, Jaemin
    Kim, Hyunjin
    Shin, Dongjin
    Lee, Myeonggeon
    Lee, Hyunjae
    Cho, Seong-je
    Suh, Kyoungwon
    2018 IEEE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2018, : 175 - 178
  • [3] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [4] Android Malware Detection Using API Calls: A Comparison of Feature Selection and Machine Learning Models
    Muzaffar, Ali
    Hassen, Hani Ragab
    Lones, Michael A.
    Zantout, Hind
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON APPLIED CYBER SECURITY (ACS) 2021, 2022, 378 : 3 - 12
  • [5] AMDDLmodel: Android smartphones malware detection using deep learning model
    Aamir, Muhammad
    Iqbal, Muhammad Waseem
    Nosheen, Mariam
    Ashraf, M. Usman
    Shaf, Ahmad
    Almarhabi, Khalid Ali
    Alghamdi, Ahmed Mohammed
    Bahaddad, Adel A.
    PLOS ONE, 2024, 19 (01):
  • [6] Malware Detection Using Machine Learning Algorithms in Android
    Sri, Kovvuri Ramya
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 561 - 568
  • [7] Android Malware Detection Using Machine Learning Technique
    Sabri, Nor ‘Afifah
    Khamis, Shakiroh
    Zainudin, Zanariah
    Lecture Notes on Data Engineering and Communications Technologies, 2024, 211 : 153 - 164
  • [8] Android Malware Detection Using Machine Learning: A Review
    Chowdhury, Naseef-Ur-Rahman
    Haque, Ahshanul
    Soliman, Hamdy
    Hossen, Mohammad Sahinur
    Fatima, Tanjim
    Ahmed, Imtiaz
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 507 - 522
  • [9] Androhealthcheck: A malware detection system for android using machine learning
    Agrawal P.
    Trivedi B.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 35 - 41
  • [10] AndyWar: an intelligent android malware detection using machine learning
    Roy, Sandipan
    Bhanja, Samit
    Das, Abhishek
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2025, 21 (01) : 303 - 311