Malware Detection on Android Smartphones using API Class and Machine Learning

被引:0
|
作者
Westyarian [1 ]
Rosmansyah, Yusep [1 ]
Dabarsyah, Budiman [1 ]
机构
[1] Inst Teknol Bandung, Sch Elect Engn & Informat, Dept Elect Engn, Jl Ganeca 10, Bandung 40132, Indonesia
关键词
Android; Malware detection; APIs class; Machine Learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a (new) method to detect malware in Android smartphones using API (application programming interface) classes. We use machine learning to classify whether an application is benign or malware. Furthermore, we compare classification precision rate from machine learning. This research uses 51 APIs package classes from 16 APIs classes and employs cross validation and percentage split test to classify benign and malware using Random Forest, J48, and Support Vector Machine algorithms. We use 412 total application samples (205 benign, 207 malware). We obtain that the classification precision average is 91.9%.
引用
收藏
页码:294 / 297
页数:4
相关论文
共 50 条
  • [41] Android Malware Detection Using Category-Based Machine Learning Classifiers
    Alatwi, Huda Ali
    Oh, Tae
    Fokoue, Ernest
    Stackpole, Bill
    SIGITE'16: PROCEEDINGS OF THE 17TH ANNUAL CONFERENCE ON INFORMATION TECHNOLOGY EDUCATION, 2016, : 54 - 59
  • [42] MLDroid-framework for Android malware detection using machine learning techniques
    Mahindru, Arvind
    Sangal, A. L.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 5183 - 5240
  • [43] Dynamic Permissions based Android Malware Detection using Machine Learning Techniques
    Mahindru, Arvind
    Singh, Paramvir
    PROCEEDINGS OF THE 10TH INNOVATIONS IN SOFTWARE ENGINEERING CONFERENCE, 2017, : 202 - 210
  • [44] A COMPARISON OF MACHINE LEARNING TECHNIQUES FOR ANDROID MALWARE DETECTION USING APACHE SPARK
    Memon, Laraib U.
    Bawany, Narmeen Z.
    Shamsi, Jawwad A.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2019, 14 (03): : 1572 - 1586
  • [45] Android malware detection using time-aware machine learning approach
    Alsobeh, Anas M. R.
    Gaber, Khalid
    Hammad, Mahmoud M.
    Nuser, Maryam
    Shatnawi, Amani
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12627 - 12648
  • [46] An Android Behavior-Based Malware Detection Method using Machine Learning
    Chang, Wei-Ling
    Sun, Hung-Min
    Wu, Wei
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2016,
  • [47] EAMDM: An Evolved Android Malware Detection Method Using API Clustering
    Yang, Hongyu
    Wang, Youwei
    Zhang, Liang
    Hu, Ze
    Cheng, Xiang
    Jiang, Laiwei
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 889 - 895
  • [48] Android Malware Detection Using Deep Learning
    Elayan, Omar N.
    Mustafa, Ahmad M.
    12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 847 - 852
  • [49] An Android Malware Detection Technique using Optimized permission and API with PCA
    Tiwari, Suman R.
    Shukla, Ravi U.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 134 - 139
  • [50] Android Malware Detection using Multi-Flows and API Patterns
    Shen, Feng
    Del Vecchio, Justin
    Mohaisen, Aziz
    Ko, Steven Y.
    Ziarek, Lukasz
    MOBISYS'17: PROCEEDINGS OF THE 15TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS, AND SERVICES, 2017, : 171 - 171