XNOR Operation of Binary Neural Networks Using Nanoelectromechanical Memory Switches

被引:1
|
作者
Park, Geun Tae [1 ]
Lee, Jin Wook [1 ]
Woo, Jae Seung [1 ]
Choi, Woo Young [1 ]
机构
[1] Seoul Natl Univ, Interuniv Semicond Res Ctr ISRC, Dept Elect & Comp Engn, Seoul 08826, South Korea
关键词
Nanoelectromechanical systems; Synapses; Transistors; Resistance; Programming; Memory management; Biological neural networks; Energy efficiency; Accuracy; Binary neural network (BNN); monolithic 3-D (M3D); nanoelectromechanical (NEM) memory switch; nonvolatile memory (NVM); ELECTRO-MECHANICAL SWITCHES; CONTENT-ADDRESSABLE MEMORY; IN-MEMORY; CONTACT;
D O I
10.1109/TED.2024.3486267
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A highly efficient nanoelectromechanical memory switch-based binary neural network (NEM BNN) is proposed for the first time. Utilizing the electromechanical movement of a cantilever beam, XNOR operation for BNNs is implemented with two access transistors and an NEM memory switch. Owing to the unique properties of NEM memory switches with monolithic 3-D (M3D) integration and nonvolatility, the proposed NEM BNNs achieve 84% smaller area and 87% lower energy consumption than SRAM-based BNNs. Furthermore, owing to the superior ON/OFF resistance ratio of NEM memory switches, NEM BNNs feature higher energy efficiency, performance, and inference accuracy than other emerging nonvolatile-based BNNs.
引用
收藏
页码:7955 / 7962
页数:8
相关论文
共 50 条
  • [21] Memory Efficient Binary Convolutional Neural Networks on Microcontrollers
    Sakr, Fouad
    Berta, Riccardo
    Doyle, Joseph
    Younes, Hamoud
    De Gloria, Alessandro
    Bellotti, Francesco
    2022 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING & COMMUNICATIONS (IEEE EDGE 2022), 2022, : 169 - 177
  • [22] The Synthesis of XNOR Recurrent Neural Networks with Stochastic Logic
    Ardakani, Arash
    Ji, Zhengyun
    Ardakani, Amir
    Gross, Warren J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [23] Large-scale Memory of Sequences using Binary Sparse Neural Networks on GPU
    Marques, Max Raphael Sobroza
    Hacene, Ghouthi Boukli
    Lassance, Carlos Eduardo Rosar Kos
    Horrein, Pierre-Henri
    2017 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2017, : 553 - 559
  • [24] Low-Power Binary Neuron Circuit With Adjustable Threshold for Binary Neural Networks Using NAND Flash Memory
    Lee, Sung-Tae
    Woo, Sung Yun
    Lee, Jong-Ho
    IEEE ACCESS, 2020, 8 (08): : 153334 - 153340
  • [25] BINARY HASHING USING SIAMESE NEURAL NETWORKS
    Jose, Abin
    Yan, Shen
    Heisterklaus, Iris
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2916 - 2920
  • [26] Production scheduling using the binary neural networks
    Matsunaga, A
    Nakashima, Y
    Kanagawa, A
    Arizono, I
    ISIM'2000: PROCEEDINGS OF THE FIFTH CHINA-JAPAN INTERNATIONAL SYMPOSIUM ON INDUSTRIAL MANAGEMENT, 2000, : 445 - 450
  • [27] Using neural networks to predict binary outcomes
    Ong, E
    Flitman, A
    1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT PROCESSING SYSTEMS, VOLS 1 & 2, 1997, : 427 - 431
  • [28] Multi-Layer Nanoelectromechanical (NEM) Memory Switches for Multi-Path Routing
    Yoon, Jisoo
    Kwon, Hyug Su
    Choi, Woo Young
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (01) : 162 - 165
  • [29] Tri-State Nanoelectromechanical Memory Switches for the Implementation of a High-Impedance State
    Baek, Gwangryeol
    Yoon, Jisoo
    Choi, Woo Young
    IEEE ACCESS, 2020, 8 (08): : 202006 - 202012
  • [30] Nanoelectromechanical torsion switch of low operation voltage for nonvolatile memory application
    Xiang, Wenfeng
    Lee, Chengkuo
    APPLIED PHYSICS LETTERS, 2010, 96 (19)