XNOR Operation of Binary Neural Networks Using Nanoelectromechanical Memory Switches

被引:1
|
作者
Park, Geun Tae [1 ]
Lee, Jin Wook [1 ]
Woo, Jae Seung [1 ]
Choi, Woo Young [1 ]
机构
[1] Seoul Natl Univ, Interuniv Semicond Res Ctr ISRC, Dept Elect & Comp Engn, Seoul 08826, South Korea
关键词
Nanoelectromechanical systems; Synapses; Transistors; Resistance; Programming; Memory management; Biological neural networks; Energy efficiency; Accuracy; Binary neural network (BNN); monolithic 3-D (M3D); nanoelectromechanical (NEM) memory switch; nonvolatile memory (NVM); ELECTRO-MECHANICAL SWITCHES; CONTENT-ADDRESSABLE MEMORY; IN-MEMORY; CONTACT;
D O I
10.1109/TED.2024.3486267
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A highly efficient nanoelectromechanical memory switch-based binary neural network (NEM BNN) is proposed for the first time. Utilizing the electromechanical movement of a cantilever beam, XNOR operation for BNNs is implemented with two access transistors and an NEM memory switch. Owing to the unique properties of NEM memory switches with monolithic 3-D (M3D) integration and nonvolatility, the proposed NEM BNNs achieve 84% smaller area and 87% lower energy consumption than SRAM-based BNNs. Furthermore, owing to the superior ON/OFF resistance ratio of NEM memory switches, NEM BNNs feature higher energy efficiency, performance, and inference accuracy than other emerging nonvolatile-based BNNs.
引用
收藏
页码:7955 / 7962
页数:8
相关论文
共 50 条
  • [41] Nearest Neighbour Search Using Binary Neural Networks
    Ferro, Demetrio
    Gripon, Vincent
    Jiang, Xiaoran
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 5106 - 5112
  • [42] Binary image coding using cellular neural networks
    Feiden, D
    Tetzlaff, R
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1149 - 1152
  • [43] Binary image rotation using cellular neural networks
    Gao, Q
    Messmer, P
    Moschytz, GS
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III, PROCEEDINGS, 2002, : 113 - 116
  • [44] BiPer: Binary Neural Networks using a Periodic Function
    Vargas, Edwin
    Correa, Claudia V.
    Hinojosa, Carlos
    Arguello, Henry
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 5684 - 5693
  • [45] Reconfigurable Field-Effect Transistor as a Synaptic Device for XNOR Binary Neural Network
    Bae, Jong-Ho
    Kim, Hyeongsu
    Kwon, Dongseok
    Lim, Suhwan
    Lee, Sung-Tae
    Park, Byung-Gook
    Lee, Jong-Ho
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (04) : 624 - 627
  • [46] XNOR-Bitcount Operation Exploiting Computing-In-Memory With STT-MRAMs
    Musello, Ariana
    Garzon, Esteban
    Lanuzza, Marco
    Procel, Luis Miguel
    Taco, Ramiro
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (03) : 1259 - 1263
  • [47] XNOR Neural Engine: A Hardware Accelerator IP for 21.6-fJ/op Binary Neural Network Inference
    Conti, Francesco
    Schiavone, Pasquale Davide
    Benini, Luca
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (11) : 2940 - 2951
  • [48] Extending Binary Neural Networks to Bayesian Neural Networks with Probabilistic Interpretation of Binary Weights
    Saito, Taisei
    Ando, Kota
    Asai, Tetsuya
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (08) : 949 - 957
  • [49] Operation of Automatic Transfer Switches in the Networks with Distributed Generation
    Ilyushin, Pavel
    Suslov, Konstantin
    2019 IEEE MILAN POWERTECH, 2019,
  • [50] Modeling of materials with fading memory using neural networks
    Oeser, Markus
    Freitag, Steffen
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (07) : 843 - 862