XNOR Operation of Binary Neural Networks Using Nanoelectromechanical Memory Switches

被引:1
|
作者
Park, Geun Tae [1 ]
Lee, Jin Wook [1 ]
Woo, Jae Seung [1 ]
Choi, Woo Young [1 ]
机构
[1] Seoul Natl Univ, Interuniv Semicond Res Ctr ISRC, Dept Elect & Comp Engn, Seoul 08826, South Korea
关键词
Nanoelectromechanical systems; Synapses; Transistors; Resistance; Programming; Memory management; Biological neural networks; Energy efficiency; Accuracy; Binary neural network (BNN); monolithic 3-D (M3D); nanoelectromechanical (NEM) memory switch; nonvolatile memory (NVM); ELECTRO-MECHANICAL SWITCHES; CONTENT-ADDRESSABLE MEMORY; IN-MEMORY; CONTACT;
D O I
10.1109/TED.2024.3486267
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A highly efficient nanoelectromechanical memory switch-based binary neural network (NEM BNN) is proposed for the first time. Utilizing the electromechanical movement of a cantilever beam, XNOR operation for BNNs is implemented with two access transistors and an NEM memory switch. Owing to the unique properties of NEM memory switches with monolithic 3-D (M3D) integration and nonvolatility, the proposed NEM BNNs achieve 84% smaller area and 87% lower energy consumption than SRAM-based BNNs. Furthermore, owing to the superior ON/OFF resistance ratio of NEM memory switches, NEM BNNs feature higher energy efficiency, performance, and inference accuracy than other emerging nonvolatile-based BNNs.
引用
收藏
页码:7955 / 7962
页数:8
相关论文
共 50 条
  • [31] Content Addressable Memory Using XNOR CAM Matrix
    Vijayalakshmi, S.
    Elango, B.
    Nagarajan, V.
    2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 2319 - 2322
  • [32] Monolithically Integrated Complementary Ferroelectric FET XNOR Synapse for the Binary Neural Network
    Hwang, Junghyeon
    Joh, Hongrae
    Kim, Chaeheon
    Ahn, Jinho
    Jeon, Sanghun
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (02) : 2467 - 2476
  • [33] MOL-Based In-Memory Computing of Binary Neural Networks
    Ali, Khaled Alhaj
    Baghdadi, Amer
    Dupraz, Elsa
    Leonardon, Mathieu
    Rizk, Mostafa
    Diguet, Jean-Philippe
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2022, 30 (07) : 869 - 880
  • [34] A Low-Voltage Split Memory Architecture for Binary Neural Networks
    Devnath, Joydeep Kumar
    Surana, Neelam
    Mekie, Joycee
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [35] Analytical Release Voltage Model of Monolithic 3-D Integrated Nanoelectromechanical Memory Switches
    Lee, Jin Wook
    Park, Geun Tae
    Choi, Woo Young
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (05) : 3150 - 3155
  • [36] Dual-configuration in-memory computing bitcells using SiOx RRAM for binary neural networks
    Kingra, Sandeep Kaur
    Parmar, Vivek
    Negi, Shubham
    Bricalli, Alessandro
    Piccolboni, Giuseppe
    Regev, Amir
    Nodin, Jean-Francois
    Molas, Gabriel
    Suri, Manan
    APPLIED PHYSICS LETTERS, 2022, 120 (03)
  • [37] Nanoelectromechanical-Switch-Based Binary Content-Addressable Memory (NEMBCAM)
    Lee, Jae Seong
    Choi, Woo Young
    IEEE ACCESS, 2021, 9 : 70214 - 70220
  • [38] Content-Addressable Memory System Using a Nanoelectromechanical Memory Switch
    Kim, Hyunju
    Cho, Mannhee
    Lee, Sanghyun
    Kwon, Hyug Su
    Choi, Woo Young
    Kim, Youngmin
    ELECTRONICS, 2022, 11 (03)
  • [39] Fault Detection in Railway Switches using Deformable Convolutional Neural Networks
    Maack, Robert F.
    Tercan, Hasan
    Solvay, Alexia F.
    Mieth, Maximilian
    Meisen, Tobias
    2021 IEEE 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2021,
  • [40] Design of Binary Convolution Operation Circuit for Binarized Neural Networks Using Single-Flux-Quantum Circuit
    Li, Zongyuan
    Yamanashi, Yuki
    Yoshikawa, Nobuyuki
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (04)