XNOR Operation of Binary Neural Networks Using Nanoelectromechanical Memory Switches

被引:1
|
作者
Park, Geun Tae [1 ]
Lee, Jin Wook [1 ]
Woo, Jae Seung [1 ]
Choi, Woo Young [1 ]
机构
[1] Seoul Natl Univ, Interuniv Semicond Res Ctr ISRC, Dept Elect & Comp Engn, Seoul 08826, South Korea
关键词
Nanoelectromechanical systems; Synapses; Transistors; Resistance; Programming; Memory management; Biological neural networks; Energy efficiency; Accuracy; Binary neural network (BNN); monolithic 3-D (M3D); nanoelectromechanical (NEM) memory switch; nonvolatile memory (NVM); ELECTRO-MECHANICAL SWITCHES; CONTENT-ADDRESSABLE MEMORY; IN-MEMORY; CONTACT;
D O I
10.1109/TED.2024.3486267
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A highly efficient nanoelectromechanical memory switch-based binary neural network (NEM BNN) is proposed for the first time. Utilizing the electromechanical movement of a cantilever beam, XNOR operation for BNNs is implemented with two access transistors and an NEM memory switch. Owing to the unique properties of NEM memory switches with monolithic 3-D (M3D) integration and nonvolatility, the proposed NEM BNNs achieve 84% smaller area and 87% lower energy consumption than SRAM-based BNNs. Furthermore, owing to the superior ON/OFF resistance ratio of NEM memory switches, NEM BNNs feature higher energy efficiency, performance, and inference accuracy than other emerging nonvolatile-based BNNs.
引用
收藏
页码:7955 / 7962
页数:8
相关论文
共 50 条
  • [1] Dynamic Slingshot Operation for Low-Operation-Voltage Nanoelectromechanical (NEM) Memory Switches
    Kang, Min Hee
    Choi, Woo Young
    IEEE ACCESS, 2020, 8 : 65683 - 65688
  • [2] XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
    Rastegari, Mohammad
    Ordonez, Vicente
    Redmon, Joseph
    Farhadi, Ali
    COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 525 - 542
  • [3] Slingshot Pull-In Operation for Low-Voltage Nanoelectromechanical Memory Switches
    Choi, Woo Young
    Kwon, Hyug Su
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (04) : 2040 - 2043
  • [4] Notched Anchor Design for Low Voltage Operation of Nanoelectromechanical (NEM) Memory Switches
    Kang, Min-Hee
    Jo, Hyun-Chan
    Choi, Woo Young
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (07) : 4198 - 4202
  • [5] XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks
    Yin, Shihui
    Jiang, Zhewei
    Seo, Jae-Sun
    Seok, Mingoo
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (06) : 1733 - 1743
  • [6] XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks
    Jiang, Zhewei
    Yin, Shihui
    Seok, Mingoo
    Seo, Jae-sun
    2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2018, : 173 - 174
  • [7] Binary Content-Addressable Memory System using Nanoelectromechanical Memory Switch
    Kim, Hyunju
    Kim, Youngmin
    2020 17TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC 2020), 2020, : 270 - 271
  • [8] Multibit Operation of Nanoelectromechanical Memory Cells
    Lee, Kwangseok
    Choi, Woo Young
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (03) : 309 - 311
  • [9] Torsional-via-Assisted Nanoelectromechanical Memory Switches
    Lee, Jin Wook
    Park, Geun Tae
    Shin, Myeong Su
    Choi, Woo Young
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (12) : 2573 - 2576
  • [10] Complexity of XOR/XNOR Boolean Functions: A Model using Binary Decision Diagrams and Back Propagation Neural Networks
    Assi, Ali
    Prasad, P. W. C.
    Beg, Azam
    Prasad, V. C.
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2007, 7 (02): : 141 - 147