Linear time algorithm for the vertex-edge domination problem in convex bipartite graphs

被引:0
|
作者
Buyukcolak, Yasemin [1 ]
机构
[1] Gebze Tech Univ, Dept Math, Kocaeli, Turkiye
关键词
Vertex-edge domination; Independent vertex-edge domination; Linear time algorithm; Convex bipartite graphs; Chain decomposition; NUMBER;
D O I
10.1016/j.disopt.2024.100877
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G = ( V , E ) , a vertex u E V ve-dominates all edges incident to any vertex in the closed neighborhood N[u]. A subset D c V is a vertex-edge dominating set if, for each edge e E E , there exists a vertex u E D such that u ve-dominates e . The objective of the ve-domination problem is to find a minimum cardinality ve-dominating set in G . In this paper, we present a linear time algorithm to find a minimum cardinality ve-dominating set for convex bipartite graphs, which is a superclass of bipartite permutation graphs and a subclass of bipartite graphs, where the ve-domination problem is solvable in linear time and NP-complete, respectively. We also establish the relationship y ve = i v e for convex bipartite graphs. Our approach leverages a chain decomposition of convex bipartite graphs, allowing for efficient identification of minimum ve-dominating sets and extending algorithmic insights into ve-domination for specific structured graph classes.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] TOTAL VERTEX-EDGE DOMINATION IN TREES
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    Volkmann, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02): : 127 - 143
  • [32] Bounds on the vertex-edge domination number of a tree
    Krishnakumari, Balakrishna
    Venkatakrishnan, Yanamandram B.
    Krzywkowski, Marcin
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 363 - 366
  • [33] Total outer connected vertex-edge domination
    Senthilkumar, B.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)
  • [34] ON VERTEX-EDGE AND EDGE-VERTEX CONNECTIVITY INDICES OF GRAPHS
    Pawar, Shiladhar
    Naji, Ahmed mohsen
    Soner, Nandappa d.
    Ashrafi, Ali reza
    Ghalavand, Ali
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (02): : 225 - 239
  • [35] A linear time algorithm for maximum matchings in convex, bipartite graphs
    Steiner, G
    Yeomans, JS
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (12) : 91 - 96
  • [36] Vertex-edge perfect Roman domination number
    Al Subaiei, Bana
    AlMulhim, Ahlam
    Akwu, Abolape Deborah
    AIMS MATHEMATICS, 2023, 8 (09): : 21472 - 21483
  • [37] Linear Algorithms for Red and Blue Domination in Convex Bipartite Graphs
    Abbas, Nesrine
    COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 37 - 48
  • [38] On a Vertex-Edge Marking Game on Graphs
    Boštjan Brešar
    Nicolas Gastineau
    Tanja Gologranc
    Olivier Togni
    Annals of Combinatorics, 2021, 25 : 179 - 194
  • [39] On a Vertex-Edge Marking Game on Graphs
    Bresar, Bostjan
    Gastineau, Nicolas
    Gologranc, Tanja
    Togni, Olivier
    ANNALS OF COMBINATORICS, 2021, 25 (01) : 179 - 194
  • [40] DOMINATION IN CONVEX AND CHORDAL BIPARTITE GRAPHS
    DAMASCHKE, P
    MULLER, H
    KRATSCH, D
    INFORMATION PROCESSING LETTERS, 1990, 36 (05) : 231 - 236