Linear time algorithm for the vertex-edge domination problem in convex bipartite graphs

被引:0
|
作者
Buyukcolak, Yasemin [1 ]
机构
[1] Gebze Tech Univ, Dept Math, Kocaeli, Turkiye
关键词
Vertex-edge domination; Independent vertex-edge domination; Linear time algorithm; Convex bipartite graphs; Chain decomposition; NUMBER;
D O I
10.1016/j.disopt.2024.100877
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G = ( V , E ) , a vertex u E V ve-dominates all edges incident to any vertex in the closed neighborhood N[u]. A subset D c V is a vertex-edge dominating set if, for each edge e E E , there exists a vertex u E D such that u ve-dominates e . The objective of the ve-domination problem is to find a minimum cardinality ve-dominating set in G . In this paper, we present a linear time algorithm to find a minimum cardinality ve-dominating set for convex bipartite graphs, which is a superclass of bipartite permutation graphs and a subclass of bipartite graphs, where the ve-domination problem is solvable in linear time and NP-complete, respectively. We also establish the relationship y ve = i v e for convex bipartite graphs. Our approach leverages a chain decomposition of convex bipartite graphs, allowing for efficient identification of minimum ve-dominating sets and extending algorithmic insights into ve-domination for specific structured graph classes.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On the Algorithmic Complexity of Double Vertex-Edge Domination in Graphs
    Venkatakrishnan, Y. B.
    Kumar, H. Naresh
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2019), 2019, 11355 : 188 - 198
  • [22] Total vertex-edge domination in graphs: Complexity and algorithms
    Singhwal, Nitisha
    Reddy, Palagiri Venkata Subba
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)
  • [23] VERTEX-EDGE ROMAN DOMINATION
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 685 - 698
  • [24] Total vertex-edge domination
    Boutrig, Razika
    Chellali, Mustapha
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1820 - 1828
  • [25] On Two Open Problems on Double Vertex-Edge Domination in Graphs
    Miao, Fang
    Fan, Wenjie
    Chellali, Mustapha
    Khoeilar, Rana
    Sheikholeslami, Seyed Mahmoud
    Soroudi, Marzieh
    MATHEMATICS, 2019, 7 (11)
  • [26] ON TOTAL VERTEX-EDGE DOMINATION
    Sahin, B.
    Sahin, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 128 - 133
  • [27] On Vertex, Edge, and Vertex-Edge Random Graphs
    Beer, Elizabeth
    Fill, James Allen
    Janson, Svante
    Scheinerman, Edward R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [28] Efficient Algorithm for the Paired-Domination Problem in Convex Bipartite Graphs
    Hung, Ruo-Wei
    Laio, Chi-Hyi
    Wang, Chun-Kai
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 365 - 369
  • [29] DOUBLE VERTEX-EDGE DOMINATION IN TREES
    Chen, Xue-Gang
    Sohn, Moo Young
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (01) : 167 - 177
  • [30] Algorithmic study on liar's vertex-edge domination problem
    Bhattacharya, Debojyoti
    Paul, Subhabrata
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (03)