Robustness of Deep-Learning-Based RF UAV Detectors

被引:1
|
作者
Elyousseph, Hilal [1 ]
Altamimi, Majid [1 ]
机构
[1] King Saud Univ, Coll Engn, Elect Engn Dept, Riyadh 12372, Saudi Arabia
关键词
UAV detection; signal processing; spectrum monitoring; computer vision; deep learning;
D O I
10.3390/s24227339
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The proliferation of low-cost, small radar cross-section UAVs (unmanned aerial vehicles) necessitates innovative solutions for countering them. Since these UAVs typically operate with a radio control link, a promising defense technique involves passive scanning of the radio frequency (RF) spectrum to detect UAV control signals. This approach is enhanced when integrated with machine-learning (ML) and deep-learning (DL) methods. Currently, this field is actively researched, with various studies proposing different ML/DL architectures competing for optimal accuracy. However, there is a notable gap regarding robustness, which refers to a UAV detector's ability to maintain high accuracy across diverse scenarios, rather than excelling in just one specific test scenario and failing in others. This aspect is critical, as inaccuracies in UAV detection could lead to severe consequences. In this work, we introduce a new dataset specifically designed to test for robustness. Instead of the existing approach of extracting the test data from the same pool as the training data, we allowed for multiple categories of test data based on channel conditions. Utilizing existing UAV detectors, we found that although coefficient classifiers have outperformed CNNs in previous works, our findings indicate that image classifiers exhibit approximately 40% greater robustness than coefficient classifiers under low signal-to-noise ratio (SNR) conditions. Specifically, the CNN classifier demonstrated sustained accuracy in various RF channel conditions not included in the training set, whereas the coefficient classifier exhibited partial or complete failure depending on channel characteristics.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A comprehensive survey on deep-learning-based visual captioning
    Bowen Xin
    Ning Xu
    Yingchen Zhai
    Tingting Zhang
    Zimu Lu
    Jing Liu
    Weizhi Nie
    Xuanya Li
    An-An Liu
    Multimedia Systems, 2023, 29 (6) : 3781 - 3804
  • [32] Author Correction: Deep-learning-based ghost imaging
    Meng Lyu
    Wei Wang
    Hao Wang
    Haichao Wang
    Guowei Li
    Ni Chen
    Guohai Situ
    Scientific Reports, 8 (1)
  • [33] A Deep-Learning-based System for Indoor Active Cleaning
    Yun, Yike
    Hou, Linjie
    Feng, Zijian
    Jin, Wei
    Liu, Yang
    Wang, Heng
    He, Ruonan
    Guo, Weitao
    Han, Bo
    Qin, Baoxing
    Li, Jiaxin
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 7803 - 7808
  • [34] Deep-learning-based acceleration of critical point calculations
    Jayaprakash, Vishnu
    Li, Huazhou
    CHEMICAL ENGINEERING SCIENCE, 2024, 298
  • [35] Deep-Learning-Based Detection of Segregations for Ultrasonic Testing
    Elischberger, Frederik
    Bamberg, Joachim
    Jiang, Xiaoyi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [36] A Deep-Learning-Based CPR Action Standardization Method
    Li, Yongyuan
    Yin, Mingjie
    Wu, Wenxiang
    Lu, Jiahuan
    Liu, Shangdong
    Ji, Yimu
    SENSORS, 2024, 24 (15)
  • [37] Deep-learning-based direct inversion for material decomposition
    Gong, Hao
    Tao, Shengzhen
    Rajendran, Kishore
    Zhou, Wei
    McCollough, Cynthia H.
    Leng, Shuai
    MEDICAL PHYSICS, 2020, 47 (12) : 6294 - 6309
  • [38] Deep-learning-based deflectometry for freeform surface measurement
    Dou, Jinchao
    Wang, Daodang
    Yu, Qiuye
    Kong, Ming
    Liu, Lu
    Xu, Xinke
    Liang, Rongguang
    OPTICS LETTERS, 2022, 47 (01) : 78 - 81
  • [39] A Deep-Learning-Based Approach to the Classification of Fire Types
    Refaee, Eshrag Ali
    Sheneamer, Abdullah
    Assiri, Basem
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [40] Deep-learning-based Intrusion Detection with Enhanced Preprocesses
    Lin, Chia-Ju
    Huang, Yueh-Min
    Chen, Ruey-Maw
    SENSORS AND MATERIALS, 2022, 34 (06) : 2391 - 2401