Robustness of Deep-Learning-Based RF UAV Detectors

被引:1
|
作者
Elyousseph, Hilal [1 ]
Altamimi, Majid [1 ]
机构
[1] King Saud Univ, Coll Engn, Elect Engn Dept, Riyadh 12372, Saudi Arabia
关键词
UAV detection; signal processing; spectrum monitoring; computer vision; deep learning;
D O I
10.3390/s24227339
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The proliferation of low-cost, small radar cross-section UAVs (unmanned aerial vehicles) necessitates innovative solutions for countering them. Since these UAVs typically operate with a radio control link, a promising defense technique involves passive scanning of the radio frequency (RF) spectrum to detect UAV control signals. This approach is enhanced when integrated with machine-learning (ML) and deep-learning (DL) methods. Currently, this field is actively researched, with various studies proposing different ML/DL architectures competing for optimal accuracy. However, there is a notable gap regarding robustness, which refers to a UAV detector's ability to maintain high accuracy across diverse scenarios, rather than excelling in just one specific test scenario and failing in others. This aspect is critical, as inaccuracies in UAV detection could lead to severe consequences. In this work, we introduce a new dataset specifically designed to test for robustness. Instead of the existing approach of extracting the test data from the same pool as the training data, we allowed for multiple categories of test data based on channel conditions. Utilizing existing UAV detectors, we found that although coefficient classifiers have outperformed CNNs in previous works, our findings indicate that image classifiers exhibit approximately 40% greater robustness than coefficient classifiers under low signal-to-noise ratio (SNR) conditions. Specifically, the CNN classifier demonstrated sustained accuracy in various RF channel conditions not included in the training set, whereas the coefficient classifier exhibited partial or complete failure depending on channel characteristics.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A Survey on Deep-Learning-Based Diabetic Retinopathy Classification
    Sebastian, Anila
    Elharrouss, Omar
    Al-Maadeed, Somaya
    Almaadeed, Noor
    DIAGNOSTICS, 2023, 13 (03)
  • [42] Deep-Learning-Based Adaptive Advertising with Augmented Reality
    Moreno-Armendariz, Marco A.
    Calvo, Hiram
    Duchanoy, Carlos A.
    Lara-Cazares, Arturo
    Ramos-Diaz, Enrique
    Morales-Flores, Victor L.
    SENSORS, 2022, 22 (01)
  • [43] A deep-learning-based method of estimating water intake
    Yamada, Yutaro
    Nishimura, Masafumi
    Mineno, Hiroshi
    Saito, Takato
    Kawasaki, Satoshi
    Ikeda, Daizo
    Katagiri, Masaji
    2017 IEEE 41ST ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 2, 2017, : 96 - 101
  • [44] Deep-Learning-Based Precipitation Observation Quality Control
    Sha, Yingkai
    Gagne, David John
    West, Gregory
    Stull, Roland
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2021, 38 (05) : 1075 - 1091
  • [45] Deep-Learning-Based Detection of Transmission Line Insulators
    Zhang, Jian
    Xiao, Tian
    Li, Minhang
    Zhou, Yucai
    ENERGIES, 2023, 16 (14)
  • [46] Deep-Learning-based Cryptanalysis through Topic Modeling
    Kumar, Kishore
    Tanwar, Sarvesh
    Kumar, Shishir
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (01) : 12524 - 12529
  • [47] Improved Selective Deep-Learning-Based Clustering Ensemble
    Qian, Yue
    Yao, Shixin
    Wu, Tianjun
    Huang, You
    Zeng, Lingbin
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [48] Deep-Learning-Based Approach for Prediction of Algal Blooms
    Zhang, Feng
    Wang, Yuanyuan
    Cao, Minjie
    Sun, Xiaoxiao
    Du, Zhenhong
    Liu, Renyi
    Ye, Xinyue
    SUSTAINABILITY, 2016, 8 (10)
  • [49] A Deep-Learning-Based Blocking Technique for Entity Linkage
    Azzalini, Fabio
    Renzi, Marco
    Tanca, Letizia
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 553 - 569
  • [50] Deep-Learning-Based Rice Phenological Stage Recognition
    Qin, Jiale
    Hu, Tianci
    Yuan, Jianghao
    Liu, Qingzhi
    Wang, Wensheng
    Liu, Jie
    Guo, Leifeng
    Song, Guozhu
    REMOTE SENSING, 2023, 15 (11)