Robustness of Deep-Learning-Based RF UAV Detectors

被引:1
|
作者
Elyousseph, Hilal [1 ]
Altamimi, Majid [1 ]
机构
[1] King Saud Univ, Coll Engn, Elect Engn Dept, Riyadh 12372, Saudi Arabia
关键词
UAV detection; signal processing; spectrum monitoring; computer vision; deep learning;
D O I
10.3390/s24227339
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The proliferation of low-cost, small radar cross-section UAVs (unmanned aerial vehicles) necessitates innovative solutions for countering them. Since these UAVs typically operate with a radio control link, a promising defense technique involves passive scanning of the radio frequency (RF) spectrum to detect UAV control signals. This approach is enhanced when integrated with machine-learning (ML) and deep-learning (DL) methods. Currently, this field is actively researched, with various studies proposing different ML/DL architectures competing for optimal accuracy. However, there is a notable gap regarding robustness, which refers to a UAV detector's ability to maintain high accuracy across diverse scenarios, rather than excelling in just one specific test scenario and failing in others. This aspect is critical, as inaccuracies in UAV detection could lead to severe consequences. In this work, we introduce a new dataset specifically designed to test for robustness. Instead of the existing approach of extracting the test data from the same pool as the training data, we allowed for multiple categories of test data based on channel conditions. Utilizing existing UAV detectors, we found that although coefficient classifiers have outperformed CNNs in previous works, our findings indicate that image classifiers exhibit approximately 40% greater robustness than coefficient classifiers under low signal-to-noise ratio (SNR) conditions. Specifically, the CNN classifier demonstrated sustained accuracy in various RF channel conditions not included in the training set, whereas the coefficient classifier exhibited partial or complete failure depending on channel characteristics.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Deep-Learning-Based Lossless Image Coding
    Schiopu, Ionut
    Munteanu, Adrian
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) : 1829 - 1842
  • [22] Data augmentation for deep-learning-based electroencephalography
    Lashgari, Elnaz
    Liang, Dehua
    Maoz, Uri
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 346
  • [23] Deep-Learning-Based Precision Visual Tracking
    Peng, Xiaoming
    Xu, Zhiyong
    Ji, Xiang
    Peng, Yufan
    Zhang, Jianlin
    Zuo, Haorui
    Wei, Yuxing
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (06)
  • [24] A deep-learning-based emergency alert system
    Kang, Byungseok
    Choo, Hyunseung
    ICT EXPRESS, 2016, 2 (02): : 67 - 70
  • [25] Deep-learning-based beamforming for rejecting interferences
    Ramezanpour, Parham
    Rezaei, Mohammad Javad
    Mosavi, Mohammad Reza
    IET SIGNAL PROCESSING, 2020, 14 (07) : 467 - 473
  • [26] Deep-learning-based sequential phishing detection
    Ogawa, Yuji
    Kimura, Tomotaka
    Cheng, Jun
    IEICE COMMUNICATIONS EXPRESS, 2022, 11 (04): : 171 - 175
  • [27] Deep-Learning-Based Embedded ADAS System
    Martins de Sousa, Frederico Luiz
    da Silva, Mauricio Jose
    Camara de Meira Santos, Ricardo Creonte
    Silva, Mateus Coelho
    Rabelo Oliveira, Ricardo Augusto
    2021 XI BRAZILIAN SYMPOSIUM ON COMPUTING SYSTEMS ENGINEERING (SBESC), 2021,
  • [28] Adversarial Robustness of Deep Learning-Based Malware Detectors via (De)Randomized Smoothing
    Gibert, Daniel
    Zizzo, Giulio
    Le, Quan
    Planes, Jordi
    IEEE ACCESS, 2024, 12 : 61152 - 61162
  • [29] Enhanced Slime Mould Optimization with Deep-Learning-Based Resource Allocation in UAV-Enabled Wireless Networks
    Alkanhel, Reem
    Rafiq, Ahsan
    Mokrov, Evgeny
    Khakimov, Abdukodir
    Muthanna, Mohammed Saleh Ali
    Muthanna, Ammar
    SENSORS, 2023, 23 (16)
  • [30] Real-time ROS Implementation of Conventional Feature-based and Deep-learning-based Monocular Visual Odometry for UAV
    Nguyen, A. M.
    Nguyen, D. T.
    Pham, V. Q.
    Nguyen, H. T.
    Tran, D. T.
    Lee, J-H
    Nguyen, A. Q.
    2022 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2022, : 436 - 441