Hyperspectral reflectance for classification of medicinal Cannabis varieties using machine learning algorithms

被引:0
|
作者
Henao-Cespedes, Vladimir [1 ]
Cardona-Morales, Oscar [2 ]
Andres Vargas-Alzate, Jolian [3 ]
Ricardo Leon-Zuleta, Julian [3 ]
Mackniven Guzman-Buendia, Eddy [4 ]
Alberto Garces-Gomez, Yeison [1 ]
机构
[1] Univ Catolica Maniz, Fac Engn & Architecture, Manizales, Colombia
[2] Univ Autonoma Maniz, Fac Engn, Antigua Estn Ferrocarril, Manizales, Colombia
[3] Cubikan Grp, Res Div, Manizales, Colombia
[4] Univ Nacl Colombia, Fac Exact & Nat Sci, Manizales, Colombia
关键词
machine learning; Cannabis; classification; spectral signature; spectroscopy; EPILEPSY;
D O I
10.1117/1.OE.63.6.064103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By classifying crops using machine learning approaches, it is possible to determine if the spectral signatures of several variations of the same species differ from one another. This allows for the correlation of the spectral signatures with key properties of the finished product. The final cannabinoid content of a certain species is a crucial quality attribute that might raise the crop's value in the case of Cannabis growing. In contrast to conventional cutting and laboratory analysis approaches, the classification of Cannabis varietals from spectral signatures is proposed as a nondestructive process. The findings demonstrate that a random forest classification algorithm optimized on hyparameters can classify four types of Cannabis grown in Colombia with a multiclass accuracy of 95.6% using the spectral signature. These findings will make it possible to determine whether the spectral signature is related to the cannabinoid content of the various kinds, which is crucial for medical purposes. (c) 2024 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Comparative performance of machine learning algorithms for Forest Cover classification using ASI - PRISMA hyperspectral data
    Caputi, Eros
    Delogu, Gabriele
    Patriarca, Alessio
    Perretta, Miriam
    Gatti, Lorenzo
    Boccia, Lorenzo
    Ripa, Maria Nicolina
    PROCEEDINGS OF 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY, METROAGRIFOR, 2023, : 248 - 252
  • [22] Machine learning classification of origins and varieties of Tetrastigma hemsleyanum using a dual-mode microscopic hyperspectral imager
    Jiao, Changwei
    Xu, Zhanpeng
    Bian, Qiuwan
    Forsberg, Erik
    Tan, Qin
    Peng, Xin
    He, Sailing
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 261
  • [23] Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean
    Yoosefzadeh-Najafabadi, Mohsen
    Earl, Hugh J.
    Tulpan, Dan
    Sulik, John
    Eskandari, Milad
    FRONTIERS IN PLANT SCIENCE, 2021, 11
  • [24] Hyperspectral Image Classification Using Reduced Extreme Learning Machine
    Sigirci, Ibrahim Onur
    Bilgin, Gokhan
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2018, : 372 - 375
  • [25] Hyperspectral classification of ancient cultural remains using machine learning
    Luo, Rongji
    Lu, Peng
    Chen, Panpan
    Wang, Hongtao
    Zhang, Xiaohu
    Yang, Shugang
    Wei, Qingli
    Wang, Tao
    Li, Yongqiang
    Liu, Tao
    Jiang, Deyang
    Du, Jun
    Tian, Yan
    Wang, Zhen
    Wang, Hui
    Mo, Duowen
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2025, 37
  • [26] Discrimination of rice varieties using LS-SVM classification algorithms and hyperspectral data
    Xiaming, Jin
    Jun, Sun
    Hanping, Mao
    Shuying, Jiang
    Qinglin, Li
    Xingxing, Chen
    Advance Journal of Food Science and Technology, 2015, 7 (09) : 691 - 696
  • [27] Retrieval of Hyperspectral Surface Reflectance Based on Machine Learning
    Zhu, Sijie
    Lei, Bin
    Wu, Yirong
    REMOTE SENSING, 2018, 10 (02)
  • [28] Classification of Cardiac Arrhythmias Using Machine Learning Algorithms
    Garcia-Aquino, Christian
    Mujica-Vargas, Dante
    Matuz-Cruz, Manuel
    TELEMATICS AND COMPUTING, WITCOM 2021, 2021, 1430 : 174 - 185
  • [29] Zonda wind classification using machine learning algorithms
    Otero, Federico
    Araneo, Diego
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (S1) : E342 - E353
  • [30] Water Quality Classification Using Machine Learning Algorithms
    Alnaqeb, Reem
    Alketbi, Khuloud
    Alrashdi, Fatema
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,