Hyperspectral reflectance for classification of medicinal Cannabis varieties using machine learning algorithms

被引:0
|
作者
Henao-Cespedes, Vladimir [1 ]
Cardona-Morales, Oscar [2 ]
Andres Vargas-Alzate, Jolian [3 ]
Ricardo Leon-Zuleta, Julian [3 ]
Mackniven Guzman-Buendia, Eddy [4 ]
Alberto Garces-Gomez, Yeison [1 ]
机构
[1] Univ Catolica Maniz, Fac Engn & Architecture, Manizales, Colombia
[2] Univ Autonoma Maniz, Fac Engn, Antigua Estn Ferrocarril, Manizales, Colombia
[3] Cubikan Grp, Res Div, Manizales, Colombia
[4] Univ Nacl Colombia, Fac Exact & Nat Sci, Manizales, Colombia
关键词
machine learning; Cannabis; classification; spectral signature; spectroscopy; EPILEPSY;
D O I
10.1117/1.OE.63.6.064103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By classifying crops using machine learning approaches, it is possible to determine if the spectral signatures of several variations of the same species differ from one another. This allows for the correlation of the spectral signatures with key properties of the finished product. The final cannabinoid content of a certain species is a crucial quality attribute that might raise the crop's value in the case of Cannabis growing. In contrast to conventional cutting and laboratory analysis approaches, the classification of Cannabis varietals from spectral signatures is proposed as a nondestructive process. The findings demonstrate that a random forest classification algorithm optimized on hyparameters can classify four types of Cannabis grown in Colombia with a multiclass accuracy of 95.6% using the spectral signature. These findings will make it possible to determine whether the spectral signature is related to the cannabinoid content of the various kinds, which is crucial for medical purposes. (c) 2024 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Classification of SSH Attacks using Machine Learning Algorithms
    Sadasivam, Gokul Kannan
    Hota, Chittaranjan
    Anand, Bhojan
    2016 6TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS 2016), 2016, : 260 - 265
  • [32] Protostellar classification using supervised machine learning algorithms
    O. Miettinen
    Astrophysics and Space Science, 2018, 363
  • [33] Water quality classification using machine learning algorithms
    Nasir, Nida
    Kansal, Afreen
    Alshaltone, Omar
    Barneih, Feras
    Sameer, Mustafa
    Shanableh, Abdallah
    Al-Shamma'a, Ahmed
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 48
  • [34] Classification of Customer Reviews Using Machine Learning Algorithms
    Noori, Behrooz
    APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (08) : 567 - 588
  • [35] Classification of Logging Data Using Machine Learning Algorithms
    Mukhamediev, Ravil
    Kuchin, Yan
    Yunicheva, Nadiya
    Kalpeyeva, Zhuldyz
    Muhamedijeva, Elena
    Gopejenko, Viktors
    Rystygulov, Panabek
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [36] Protostellar classification using supervised machine learning algorithms
    Miettinen, O.
    ASTROPHYSICS AND SPACE SCIENCE, 2018, 363 (09)
  • [37] Liver Diseases Classification Using Machine Learning Algorithms
    Jovovic, Ivan
    Grebovic, Marko
    Pokvic, Lejla Gurbeta
    Popovic, Tomo
    Cakic, Stevan
    MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 585 - 593
  • [38] Classification of Swallowing Foods Using Machine Learning Algorithms
    Lim, Ji Hyun
    Djuric, Petar M.
    Stanacevic, Milutin
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1571 - 1574
  • [39] Classification of Rheumatoid Arthritis using Machine Learning Algorithms
    Ho, Sharon
    Elamvazuthi, I.
    Lu, C. K.
    2018 IEEE 4TH INTERNATIONAL SYMPOSIUM IN ROBOTICS AND MANUFACTURING AUTOMATION (ROMA), 2018,
  • [40] Using Machine Learning Algorithms for Fruit Disease Classification
    Sathishkumar, V. E.
    Rahman, A. B. M. Salman
    Park, Jangwoo
    Shin, Changsun
    Cho, Yongyun
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 126 : 253 - 253