Hyperspectral reflectance for classification of medicinal Cannabis varieties using machine learning algorithms

被引:0
|
作者
Henao-Cespedes, Vladimir [1 ]
Cardona-Morales, Oscar [2 ]
Andres Vargas-Alzate, Jolian [3 ]
Ricardo Leon-Zuleta, Julian [3 ]
Mackniven Guzman-Buendia, Eddy [4 ]
Alberto Garces-Gomez, Yeison [1 ]
机构
[1] Univ Catolica Maniz, Fac Engn & Architecture, Manizales, Colombia
[2] Univ Autonoma Maniz, Fac Engn, Antigua Estn Ferrocarril, Manizales, Colombia
[3] Cubikan Grp, Res Div, Manizales, Colombia
[4] Univ Nacl Colombia, Fac Exact & Nat Sci, Manizales, Colombia
关键词
machine learning; Cannabis; classification; spectral signature; spectroscopy; EPILEPSY;
D O I
10.1117/1.OE.63.6.064103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By classifying crops using machine learning approaches, it is possible to determine if the spectral signatures of several variations of the same species differ from one another. This allows for the correlation of the spectral signatures with key properties of the finished product. The final cannabinoid content of a certain species is a crucial quality attribute that might raise the crop's value in the case of Cannabis growing. In contrast to conventional cutting and laboratory analysis approaches, the classification of Cannabis varietals from spectral signatures is proposed as a nondestructive process. The findings demonstrate that a random forest classification algorithm optimized on hyparameters can classify four types of Cannabis grown in Colombia with a multiclass accuracy of 95.6% using the spectral signature. These findings will make it possible to determine whether the spectral signature is related to the cannabinoid content of the various kinds, which is crucial for medical purposes. (c) 2024 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Software Requirements Classification Using Machine Learning Algorithms
    Dias Canedo, Edna
    Cordeiro Mendes, Bruno
    ENTROPY, 2020, 22 (09)
  • [42] Classification of stroke disease using machine learning algorithms
    Govindarajan, Priya
    Soundarapandian, Ravichandran Kattur
    Gandomi, Amir H.
    Patan, Rizwan
    Jayaraman, Premaladha
    Manikandan, Ramachandran
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (03): : 817 - 828
  • [43] Diagnosis and Classification of the Diabetes Using Machine Learning Algorithms
    Theerthagiri P.
    Ruby A.U.
    Vidya J.
    SN Computer Science, 4 (1)
  • [44] Classification of Rheumatoid Arthritis using Machine Learning Algorithms
    Sharon, Ho
    Elamvazuthi, I
    Lu, C. K.
    Parasuraman, S.
    Natarajan, Elango
    2019 17TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2019, : 345 - 350
  • [45] Classification of Garlic Varieties with Fluorescent Spectroscopy Using Machine Learning
    Yasar, Ali
    Slavova, Vanya
    Genova, Stefka
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2024, 18 (04): : 523 - 531
  • [46] Apple Varieties Classification Using Deep Features and Machine Learning
    Taner, Alper
    Mengstu, Mahtem Teweldemedhin
    Selvi, Kemal Cagatay
    Duran, Huseyin
    Gur, Ibrahim
    Ungureanu, Nicoleta
    AGRICULTURE-BASEL, 2024, 14 (02):
  • [47] HYPERSPECTRAL IMAGING SYSTEM FOR MATURITY STAGE CLASSIFICATION OF DURIAN PULP USING BAYESIAN OPTIMIZED MACHINE LEARNING ALGORITHMS
    Sharma, Sneha
    Sumesh, K. C.
    Sirisomboon, Panmanas
    SCIENTIFIC PAPERS-SERIES B-HORTICULTURE, 2021, 65 (01): : 244 - 250
  • [48] Machine Learning Algorithms to Predict Forage Nutritive Value of In Situ Perennial Ryegrass Plants Using Hyperspectral Canopy Reflectance Data
    Smith, Chaya
    Karunaratne, Senani
    Badenhorst, Pieter
    Cogan, Noel
    Spangenberg, German
    Smith, Kevin
    REMOTE SENSING, 2020, 12 (06)
  • [49] Mapping of hyperspectral AVIRIS data using machine-learning algorithms
    Waske, Bjorn
    Benediktsson, Jon Atli
    Arnason, Kolbeinn
    Sveinsson, Johannes R.
    CANADIAN JOURNAL OF REMOTE SENSING, 2009, 35 : S106 - S116
  • [50] A Survey on Hyperspectral Imaging for Mineral Exploration using Machine Learning Algorithms
    Sudharsan, S.
    Hemalatha, R.
    Radha, S.
    2019 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET 2019): ADVANCING WIRELESS AND MOBILE COMMUNICATIONS TECHNOLOGIES FOR 2020 INFORMATION SOCIETY, 2019, : 206 - 212