Zonda wind classification using machine learning algorithms

被引:4
|
作者
Otero, Federico [1 ]
Araneo, Diego [1 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, CCT Mendoza, Inst Argentino Nivol Glaciol & Ciencias Ambiental, IANIGLA, Mendoza, Argentina
关键词
diagnosis models; downslope windstorm; machine learning; Zonda classification; STRATIFIED FLOW; MODEL; TOPOGRAPHY;
D O I
10.1002/joc.6688
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Zonda wind is a typical downslope windstorm over the eastern slopes of Central Andes, in Argentina, which produces extremely warm and dry conditions creating substantial socioeconomic impacts. To achieve the Zonda wind classification, objective methods based on supervised machine learning (ML) algorithms are used. ML training and supervision is based on the subjective Zonda wind classification assessing the total hourly data that correspond to Zonda wind observations for three surface stations longtime series. ML algorithms includes; the linear discriminant analysis (LD), linear support vector machine (SVM), k nearest neighbours (k-NN), logistic regression (LR) and classification trees. Metrics obtained from the confusion matrix are used to compare the models' skills in class separation. Considering event-based statistics, the obtained probability of detection values locate all models above 85% with a probability of false detection lower than 0.523% and a missing ratio below 15%. From an alarm-based perspective, algorithms show values below 11.42% in false alarm rate, lower than 0.7% in missing alarm ratio and higher than 88.85% in correct alarm ratio. The false negative rate occurs mostly from August to December, where the onset time of the events presents greater difficulty in the classification than the offset, while the false alarm increases in June and October months. Models skills reveal that k-NN, SVM and LR are better discriminators than LD and classification tree. The high efficiency of these models indicates that ML classification models could be used for the phenomenon diagnosis.
引用
收藏
页码:E342 / E353
页数:12
相关论文
共 50 条
  • [1] Petrofacies classification using machine learning algorithms
    Silva, Adrielle A.
    Tavares, Monica W.
    Carrasquilla, Abel
    Missagia, Roseane
    Ceia, Marco
    [J]. GEOPHYSICS, 2020, 85 (04) : WA101 - WA113
  • [2] Petrofacies classification using machine learning algorithms
    Silva, Adrielle A.
    Tavares, Mônica W.
    Carrasquilla, Abel
    Misságia, Roseane
    Ceia, Marco
    [J]. Geophysics, 2020, 85 (04):
  • [3] Wind Power Forecasting Using Machine Learning Algorithms
    Diop, Sambalaye
    Traore, Papa Silly
    Ndiaye, Mamadou Lamine
    [J]. PROCEEDINGS OF 2021 9TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2021, : 128 - 133
  • [4] Water Quality Classification Using Machine Learning Algorithms
    Alnaqeb, Reem
    Alketbi, Khuloud
    Alrashdi, Fatema
    Ismail, Heba
    [J]. 2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [5] Classification of SSH Attacks using Machine Learning Algorithms
    Sadasivam, Gokul Kannan
    Hota, Chittaranjan
    Anand, Bhojan
    [J]. 2016 6TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS 2016), 2016, : 260 - 265
  • [6] Classification of Cardiac Arrhythmias Using Machine Learning Algorithms
    Garcia-Aquino, Christian
    Mujica-Vargas, Dante
    Matuz-Cruz, Manuel
    [J]. TELEMATICS AND COMPUTING, WITCOM 2021, 2021, 1430 : 174 - 185
  • [7] Liver Diseases Classification Using Machine Learning Algorithms
    Jovovic, Ivan
    Grebovic, Marko
    Pokvic, Lejla Gurbeta
    Popovic, Tomo
    Cakic, Stevan
    [J]. MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 585 - 593
  • [8] Classification of Swallowing Foods Using Machine Learning Algorithms
    Lim, Ji Hyun
    Djuric, Petar M.
    Stanacevic, Milutin
    [J]. INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1571 - 1574
  • [9] Protostellar classification using supervised machine learning algorithms
    Miettinen, O.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2018, 363 (09)
  • [10] Classification of Logging Data Using Machine Learning Algorithms
    Mukhamediev, Ravil
    Kuchin, Yan
    Yunicheva, Nadiya
    Kalpeyeva, Zhuldyz
    Muhamedijeva, Elena
    Gopejenko, Viktors
    Rystygulov, Panabek
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):