AnnoView enables large-scale analysis, comparison, and visualization of microbial gene neighborhoods

被引:5
|
作者
Wei, Xin [1 ,2 ]
Tan, Huagang [1 ,2 ]
Lobb, Briallen [1 ,2 ]
Zhen, William [1 ,2 ]
Wu, Zijing [1 ,2 ]
Parks, Donovan H. [3 ]
Neufeld, Josh D. [1 ,2 ]
Moreno-Hagelsieb, Gabriel [4 ]
Doxey, Andrew C. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Biol, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Ctr Microbial Res, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[3] Univ Queensland, Australian Ctr Ecogenom, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
[4] Wilfrid Laurier Univ, Dept Biol, 75 Univ Ave West, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bioinformatics; microbial genomics; gene neighborhoods; genomic context; genome visualization; functional annotation; PROTEIN FUNCTION; GENOMIC CONTEXT; CORONAVIRUS; SEQUENCE; DISCOVERY; IDENTIFICATION; SECRETION; ALIGNMENT; PATHWAYS; CLUSTERS;
D O I
10.1093/bib/bbae229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A Comparison of Approaches to Large-Scale Data Analysis
    Pavlo, Andrew
    Paulson, Erik
    Rasin, Alexander
    Abadi, Daniel J.
    DeWitt, David J.
    Madden, Samuel
    Stonebraker, Michael
    ACM SIGMOD/PODS 2009 CONFERENCE, 2009, : 165 - 178
  • [22] Information visualization and large-scale repositories
    Collins, Linn Marks
    Hussell, Jeremy A. T.
    Hettinga, Robert K.
    Powell, James E.
    Mane, Ketan K.
    Martinez, Mark L. B.
    LIBRARY HI TECH, 2007, 25 (03) : 366 - 378
  • [23] Visualization for Large-scale Gaussian Updates
    Rougier, Jonathan
    Zammit-Mangion, Andrew
    SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (04) : 1153 - 1161
  • [24] Large-Scale Immune Models and Visualization
    Perrin, Dimitri
    Burns, John
    ERCIM NEWS, 2008, (74): : 35 - 36
  • [25] Performance analysis of large-scale OXC that enables dynamic modular growth
    Tanaka, Yasuhiro
    Hasegawa, Hiroshi
    Sato, Ken-ichi
    OPTICS EXPRESS, 2015, 23 (05): : 5994 - 6006
  • [26] Large-Scale Graph Visualization and Analytics
    Ma, Kwan-Liu
    Muelder, Chris W.
    COMPUTER, 2013, 46 (07) : 39 - 46
  • [27] Large-Scale Astrophysical Visualization on Smartphones
    Becciani, U.
    Massimino, P.
    Costa, A.
    Gheller, C.
    Grillo, A.
    Krokos, M.
    Petta, C.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XX, 2011, 442 : 621 - +
  • [28] Dynamic sharing of large-scale visualization
    Huang, Jian
    Liu, Huadong
    Beck, Micah
    Gaston, Andrew
    Gao, Jinzhu
    Moore, Terry
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2007, 27 (01) : 20 - 25
  • [29] LARGE-SCALE VISUALIZATION OF SPARSE MATRICES
    Langr, D.
    Simecek, I.
    Tvrdiki, P.
    Dytrych, T.
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2014, 15 (01): : 21 - 31
  • [30] Visualization of large-scale trajectory datasets
    Zachar, Gergely
    2023 CYBER-PHYSICAL SYSTEMS AND INTERNET-OF-THINGS WEEK, CPS-IOT WEEK WORKSHOPS, 2023, : 152 - 157