AnnoView enables large-scale analysis, comparison, and visualization of microbial gene neighborhoods

被引:5
|
作者
Wei, Xin [1 ,2 ]
Tan, Huagang [1 ,2 ]
Lobb, Briallen [1 ,2 ]
Zhen, William [1 ,2 ]
Wu, Zijing [1 ,2 ]
Parks, Donovan H. [3 ]
Neufeld, Josh D. [1 ,2 ]
Moreno-Hagelsieb, Gabriel [4 ]
Doxey, Andrew C. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Biol, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Ctr Microbial Res, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[3] Univ Queensland, Australian Ctr Ecogenom, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
[4] Wilfrid Laurier Univ, Dept Biol, 75 Univ Ave West, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bioinformatics; microbial genomics; gene neighborhoods; genomic context; genome visualization; functional annotation; PROTEIN FUNCTION; GENOMIC CONTEXT; CORONAVIRUS; SEQUENCE; DISCOVERY; IDENTIFICATION; SECRETION; ALIGNMENT; PATHWAYS; CLUSTERS;
D O I
10.1093/bib/bbae229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Large-scale gene function analysis in Candida albicans
    Bruno, VM
    Mitchell, AP
    TRENDS IN MICROBIOLOGY, 2004, 12 (04) : 157 - 161
  • [42] LARGE-SCALE CANDIDATE GENE ANALYSIS OF ENDOPHENOTYPES FOR SCHIZOPHRENIA
    Greenwood, Tiffany A.
    Light, G. A.
    Swerdlow, N. R.
    Geyer, M. A.
    Radant, A. D.
    Braff, D. L.
    SCHIZOPHRENIA BULLETIN, 2009, 35 : 122 - 122
  • [43] Quantivine: A Visualization Approach for Large-Scale Quantum Circuit Representation and Analysis
    Wen, Zhen
    Liu, Yihan
    Tan, Siwei
    Chen, Jieyi
    Zhu, Minfeng
    Han, Dongming
    Yin, Jianwei
    Xu, Mingliang
    Chen, Wei
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (01) : 573 - 583
  • [44] Gaussian embedding for large-scale gene set analysis
    Sheng Wang
    Emily R. Flynn
    Russ B. Altman
    Nature Machine Intelligence, 2020, 2 : 387 - 395
  • [45] Gaussian embedding for large-scale gene set analysis
    Wang, Sheng
    Flynn, Emily R.
    Altman, Russ B.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (07) : 387 - 395
  • [46] OpenMS 3 enables reproducible analysis of large-scale mass spectrometry data
    Julianus Pfeuffer
    Chris Bielow
    Samuel Wein
    Kyowon Jeong
    Eugen Netz
    Axel Walter
    Oliver Alka
    Lars Nilse
    Pasquale Domenico Colaianni
    Douglas McCloskey
    Jihyung Kim
    George Rosenberger
    Leon Bichmann
    Mathias Walzer
    Johannes Veit
    Bertrand Boudaud
    Matthias Bernt
    Nikolaos Patikas
    Matteo Pilz
    Michał Piotr Startek
    Svetlana Kutuzova
    Lukas Heumos
    Joshua Charkow
    Justin Cyril Sing
    Ayesha Feroz
    Arslan Siraj
    Hendrik Weisser
    Tjeerd M. H. Dijkstra
    Yasset Perez-Riverol
    Hannes Röst
    Oliver Kohlbacher
    Timo Sachsenberg
    Nature Methods, 2024, 21 : 365 - 367
  • [47] VFFVA: dynamic load balancing enables large-scale flux variability analysis
    Marouen Ben Guebila
    BMC Bioinformatics, 21
  • [48] VFFVA: dynamic load balancing enables large-scale flux variability analysis
    Ben Guebila, Marouen
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [49] OpenMS 3 enables reproducible analysis of large-scale mass spectrometry data
    Pfeuffer, Julianus
    Bielow, Chris
    Wein, Samuel
    Jeong, Kyowon
    Netz, Eugen
    Walter, Axel
    Alka, Oliver
    Nilse, Lars
    Colaianni, Pasquale Domenico
    Mccloskey, Douglas
    Kim, Jihyung
    Rosenberger, George
    Bichmann, Leon
    Walzer, Mathias
    Veit, Johannes
    Boudaud, Bertrand
    Bernt, Matthias
    Patikas, Nikolaos
    Pilz, Matteo
    Startek, Michal Piotr
    Kutuzova, Svetlana
    Heumos, Lukas
    Charkow, Joshua
    Sing, Justin Cyril
    Feroz, Ayesha
    Siraj, Arslan
    Weisser, Hendrik
    Dijkstra, Tjeerd M. H.
    Perez-Riverol, Yasset
    Roest, Hannes
    Kohlbacher, Oliver
    Sachsenberg, Timo
    NATURE METHODS, 2024, 21 (3) : 365 - 367
  • [50] Two very large-scale neighborhoods for single machine scheduling
    Tobias Brueggemann
    Johann L. Hurink
    OR Spectrum, 2007, 29 : 513 - 533