AnnoView enables large-scale analysis, comparison, and visualization of microbial gene neighborhoods

被引:5
|
作者
Wei, Xin [1 ,2 ]
Tan, Huagang [1 ,2 ]
Lobb, Briallen [1 ,2 ]
Zhen, William [1 ,2 ]
Wu, Zijing [1 ,2 ]
Parks, Donovan H. [3 ]
Neufeld, Josh D. [1 ,2 ]
Moreno-Hagelsieb, Gabriel [4 ]
Doxey, Andrew C. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Biol, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Ctr Microbial Res, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[3] Univ Queensland, Australian Ctr Ecogenom, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
[4] Wilfrid Laurier Univ, Dept Biol, 75 Univ Ave West, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bioinformatics; microbial genomics; gene neighborhoods; genomic context; genome visualization; functional annotation; PROTEIN FUNCTION; GENOMIC CONTEXT; CORONAVIRUS; SEQUENCE; DISCOVERY; IDENTIFICATION; SECRETION; ALIGNMENT; PATHWAYS; CLUSTERS;
D O I
10.1093/bib/bbae229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Visualization of Large-Scale Neural Simulations
    Hernando, Juan B.
    Duelo, Carlos
    Martin, Vicente
    BRAIN-INSPIRED COMPUTING, 2014, 8603 : 184 - 197
  • [32] A large-scale on-chip droplet incubation chamber enables equal microbial culture time
    Dai, Jing
    Kim, Hyun Soo
    Guzman, Adrian Ryan
    Shim, Won-Bo
    Han, Arum
    RSC ADVANCES, 2016, 6 (25): : 20516 - 20519
  • [33] GE-mini: a mobile APP for large-scale gene expression visualization
    Tang, Zefang
    Li, Chenwei
    Zhang, Karena
    Yang, Mingyu
    Hu, Xueda
    BIOINFORMATICS, 2017, 33 (06) : 941 - 943
  • [35] Large-scale prokaryotic gene prediction and comparison to genome annotation
    Nielsen, P
    Krogh, A
    BIOINFORMATICS, 2005, 21 (24) : 4322 - 4329
  • [36] SNAVI: Desktop application for analysis and visualization of large-scale signaling networks
    Ma'ayan, Avi
    Jenkins, Sherry L.
    Webb, Ryan L.
    Berger, Seth I.
    Purushothaman, Sudarshan P.
    Abul-Husn, Noura S.
    Posner, Jeremy M.
    Flores, Tony
    Iyengar, Ravi
    BMC SYSTEMS BIOLOGY, 2009, 3
  • [37] Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems
    Gabor, Attila
    Villaverde, Alejandro F.
    Banga, Julio R.
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [38] Interactive visualization and analysis of large-scale sequencing datasets using ZENBU
    Severin, Jessica
    Lizio, Marina
    Harshbarger, Jayson
    Kawaji, Hideya
    Daub, Carsten O.
    Hayashizaki, Yoshihide
    Bertin, Nicolas
    Forrest, Alistair R. R.
    NATURE BIOTECHNOLOGY, 2014, 32 (03) : 217 - 219
  • [39] Visualization Analysis Framework for Large-Scale Software Based on Software Network
    Ren, Shengbing
    Jia, Mengyu
    Huang, Fei
    Liu, Yuan
    DATA SCIENCE, PT 1, 2017, 727 : 751 - 763
  • [40] Interactive visualization and analysis of large-scale sequencing datasets using ZENBU
    Jessica Severin
    Marina Lizio
    Jayson Harshbarger
    Hideya Kawaji
    Carsten O Daub
    Yoshihide Hayashizaki
    Nicolas Bertin
    Alistair R R Forrest
    Nature Biotechnology, 2014, 32 : 217 - 219