LARGE-SCALE VISUALIZATION OF SPARSE MATRICES

被引:2
|
作者
Langr, D. [1 ]
Simecek, I. [1 ]
Tvrdiki, P. [1 ]
Dytrych, T. [2 ]
机构
[1] Czech Tech Univ, Fac Informat Technol, Dept Comp Syst, Thakurova 9, Prague 16000, Czech Republic
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
来源
基金
美国国家科学基金会;
关键词
visualization; sparse matrices; parallel system; distributed algorithm; data acquisition;
D O I
10.12694/scpe.v15i1.963
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An efficient algorithm for parallel acquisition of visualization data for large sparse matrices is presented and evaluated both analytically and empirically. The algorithm was designed to be application-independent, i.e., it works with any matrix-processors mapping and with any sparse storage format/scheme. The empirical scalability study of the algorithm was carried on using multiple modern HPC systems. In our largest experiment, we utilized 262144 processors for 73 seconds to gather and store to a file the visualization data for a matrix with 1.17 . 10(13) nonzero elements. Using the proposed algorithm, one can thus visualize large sparse matrices with a minimal runtime overhead imposed on executed HPC codes.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 50 条
  • [1] Development of Krylov and AMG Linear Solvers for Large-Scale Sparse Matrices on GPUs
    Yang, Bo
    Liu, Hui
    Chen, Zhangxin
    [J]. HIGH PERFORMANCE COMPUTING AND APPLICATIONS, HPCA 2015, 2016, 9576 : 55 - 72
  • [2] Sparse Matrices and Their Use in the Analysis and Design of Large-Scale Networks - 2.
    Sangiovanni Vincentelli, A.
    Santomauro, M.
    [J]. Alta Frequenza, 1974, 43 (11): : 957 - 975
  • [3] Approximating sparse Hessian matrices using large-scale linear least squares
    Fowkes, Jaroslav M.
    Gould, Nicholas I. M.
    Scott, Jennifer A.
    [J]. NUMERICAL ALGORITHMS, 2024, 96 (04) : 1675 - 1698
  • [4] Statistical assessment and visualization of synergies for large-scale sparse drug combination datasets
    Arnaud Amzallag
    Sridhar Ramaswamy
    Cyril H. Benes
    [J]. BMC Bioinformatics, 20
  • [5] Statistical assessment and visualization of synergies for large-scale sparse drug combination datasets
    Amzallag, Arnaud
    Ramaswamy, Sridhar
    Benes, Cyril H.
    [J]. BMC BIOINFORMATICS, 2019, 20 (1)
  • [6] Large-scale data visualization
    Ma, KL
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2001, 21 (04) : 22 - 23
  • [7] StructMatrix: large-scale visualization of graphs by means of structure detection and dense matrices
    Gualdron, Hugo
    Cordeiro, Robson L. F.
    Rodrigues, Jose F., Jr.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 493 - 500
  • [8] Large-scale network visualization
    Abello, J
    Koutsofios, E
    Gansner, ER
    North, SC
    [J]. COMPUTER GRAPHICS-US, 1999, 33 (03): : 13 - 15
  • [10] Hardware Acceleration of Large-Scale CMOS Invertible Logic Based on Sparse Hamiltonian Matrices
    Onizawa, Naoya
    Tamakoshi, Akira
    Hanyu, Takahiro
    [J]. IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2021, 2 : 782 - 791