Alternatives to classical option pricing

被引:0
|
作者
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79407 USA
关键词
Option pricing; Financial markets without riskless asset; Shadow riskless rate; Perpetual derivative; Deflated cumulative return process; MEAN-VARIANCE; EQUILIBRIUM;
D O I
10.1007/s10479-024-06213-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document}. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don't have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [31] Empirical Option Pricing Models
    Bates, David S.
    ANNUAL REVIEW OF FINANCIAL ECONOMICS, 2022, 14 : 369 - 389
  • [32] Using simulation for option pricing
    Charnes, JM
    PROCEEDINGS OF THE 2000 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2000, : 151 - 157
  • [33] Renewal equations for option pricing
    M. Montero
    The European Physical Journal B, 2008, 65 : 295 - 306
  • [34] OPTION PRICING METHODS - AN OVERVIEW
    VANHULLE, C
    INSURANCE MATHEMATICS & ECONOMICS, 1988, 7 (03): : 139 - 152
  • [35] Clustering and Classification in Option Pricing
    Gradojevic, Nikola
    Kukolj, Dragan
    Gencay, Ramazan
    REVIEW OF ECONOMIC ANALYSIS, 2011, 3 (02): : 109 - 128
  • [36] OPTION PRICING - AMERICAN PUT
    PARKINSON, M
    JOURNAL OF BUSINESS, 1977, 50 (01): : 21 - 36
  • [37] Option ARMs: Performance and Pricing
    Goodman, Laurie S.
    Ashworth, Roger
    Landy, Brian
    Yin, Ke
    JOURNAL OF STRUCTURED FINANCE, 2010, 16 (01): : 39 - 54
  • [38] A Reduced Basis for Option Pricing
    Cont, Rama
    Lantos, Nicolas
    Pironneau, Olivier
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 287 - 316
  • [39] Asymptotic methods in option pricing
    Sammartino, M
    WASCOM 2003: 12TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, PROCEEDINGS, 2004, : 482 - 493
  • [40] Isogeometric analysis in option pricing
    Pospisil, Jan
    Svigler, Vladimir
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (11) : 2177 - 2200