Alternatives to classical option pricing

被引:0
|
作者
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79407 USA
关键词
Option pricing; Financial markets without riskless asset; Shadow riskless rate; Perpetual derivative; Deflated cumulative return process; MEAN-VARIANCE; EQUILIBRIUM;
D O I
10.1007/s10479-024-06213-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document}. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don't have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [41] Renewal equations for option pricing
    Montero, M.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 65 (02): : 295 - 306
  • [42] Factor Models for Option Pricing
    Carr, Peter
    Madan, Dilip
    ASIA-PACIFIC FINANCIAL MARKETS, 2012, 19 (04) : 319 - 329
  • [43] Efficient simulations for option pricing
    Staum, J
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 258 - 266
  • [44] Option Pricing in an Incomplete Market
    Grigorian, Karen
    Jarrow, Robert A.
    QUARTERLY JOURNAL OF FINANCE, 2024, 14 (03)
  • [45] Option pricing with stochastic variables
    Wang, JW
    Chen, GM
    Li, Y
    Merville, L
    PROCEEDINGS OF 2002 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2002, : 1569 - 1576
  • [46] PSYCHOLOGICAL BARRIERS AND OPTION PRICING
    Jang, Bong-Gyu
    Kim, Changki
    Kim, Kyeong Tae
    Lee, Seungkyu
    Shin, Dong-Hoon
    JOURNAL OF FUTURES MARKETS, 2015, 35 (01) : 52 - 74
  • [47] The inverse problem of option pricing
    Isakov, V
    RECENT DEVELOPMENT IN THEORIES & NUMERICS, 2003, : 47 - 55
  • [48] Empirical option pricing: a retrospection
    Bates, DS
    JOURNAL OF ECONOMETRICS, 2003, 116 (1-2) : 387 - 404
  • [49] Inverse problem of option pricing
    Bouchouev, Ilia
    Isakov, Victor
    Inverse Problems, 1997, 13 (05):
  • [50] Option Pricing on Multiple Assets
    Thomas P. Branson
    Yang Ho Choi
    Acta Applicandae Mathematica, 2006, 94 : 137 - 162