Alternatives to classical option pricing

被引:0
|
作者
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79407 USA
关键词
Option pricing; Financial markets without riskless asset; Shadow riskless rate; Perpetual derivative; Deflated cumulative return process; MEAN-VARIANCE; EQUILIBRIUM;
D O I
10.1007/s10479-024-06213-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document}. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don't have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [11] Asian option pricing
    Svabova, Lucia
    Durica, Marek
    MANAGING AND MODELLING OF FINANCIAL RISKS - 6TH INTERNATIONAL SCIENTIFIC CONFERENCE PROCEEDINGS, PTS 1 AND 2, 2012, : 600 - +
  • [12] Supersymmetry in option pricing
    Jana, T. K.
    Roy, P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (12) : 2350 - 2355
  • [13] Heterogeneity and option pricing
    Benninga S.
    Mayshar J.
    Review of Derivatives Research, 2000, 4 (1) : 7 - 27
  • [14] ON OPTION PRICING BOUNDS
    RITCHKEN, PH
    JOURNAL OF FINANCE, 1985, 40 (04): : 1219 - 1233
  • [15] Relativistic Option Pricing
    Carvalho, Vitor H.
    Gaspar, Raquel M.
    INTERNATIONAL JOURNAL OF FINANCIAL STUDIES, 2021, 9 (02):
  • [16] ON THE THEORY OF OPTION PRICING
    BENSOUSSAN, A
    ACTA APPLICANDAE MATHEMATICAE, 1984, 2 (02) : 139 - 158
  • [17] Conic Option Pricing
    Madan, Dilip B.
    Schoutens, Wim
    JOURNAL OF DERIVATIVES, 2017, 25 (01): : 10 - 36
  • [18] Approximate option pricing
    Chalasani, P
    Jha, S
    Saias, I
    ALGORITHMICA, 1999, 25 (01) : 2 - 21
  • [19] Arithmetic of option pricing
    Koltisko, JD
    Merrill, C
    Hong, LD
    Beker, SA
    Anderson, DA
    RECORD - SOCIETY OF ACTUARIES, VOL 21, NO 1, 1996, 21 (01): : 435 - 459
  • [20] VIX OPTION PRICING
    Lin, Yueh-Neng
    Chang, Chien-Hung
    JOURNAL OF FUTURES MARKETS, 2009, 29 (06) : 523 - 543